Topology of the Symmetry Group of the Standard Model

作者: M. A. Aguilar

DOI: 10.1023/A:1026649024484

关键词:

摘要: We study the topological structure of thesymmetry group standard model, GSM =U(1) × SU(2) SU(3). Locally,GSM ≃ S1 ×(S3)2 S5. For SU(3), whichis an S3-bundle over S5 (and therefore a local product thesespheres) we give canonical gauge i.e., setof trivializations. These formulas explicitlythe matrices SU(3) without using Lie algebra (Gell-Mann matrices). Globally, prove thatthe characteristic function is suspensionof Hopf map \(s^3 \underrightarrow hs^2\). also case SU(n) forarbitrary n, in particular cases SU(4), flavor group, and SU(5),a candidate for grand unification. show 2-sphere related to fundamentalsymmetries nature due its relation SO0(3, 1), identity component Lorentz asubgroup symmetry several theoriesof gravity.

参考文章(20)
Heinrich Saller, External-Internal Group Quotient Structure for the Standard Model in Analogy to General Relativity International Journal of Theoretical Physics. ,vol. 37, pp. 2333- 2361 ,(1998) , 10.1023/A:1026610924096
Norman Earl Steenrod, The Topology of Fibre Bundles. ,(1951)
Rabindra N. Mohapatra, Unification and supersymmetry ,(1986)
F. G. Basombrío, A comparative review of certain gauge theories of the gravitational field General Relativity and Gravitation. ,vol. 12, pp. 109- 136 ,(1980) , 10.1007/BF00756467
Abhay Ashtekar, Troy A. Schilling, Geometry of quantum mechanics AIP Conference Proceedings. ,vol. 342, pp. 471- 478 ,(2008) , 10.1063/1.48786
Wolfgang Rindler, Roger Penrose, Spinors and space-time ,(1984)
Alejandro Corichi, Michael P Ryan, Quantization of non-standard Hamiltonian systems Journal of Physics A. ,vol. 30, pp. 3553- 3572 ,(1997) , 10.1088/0305-4470/30/10/029
Friedrich W. Hehl, Paul von der Heyde, G. David Kerlick, James M. Nester, General Relativity with Spin and Torsion: Foundations and Prospects Reviews of Modern Physics. ,vol. 48, pp. 393- 416 ,(1976) , 10.1103/REVMODPHYS.48.393
Tai Tsun Wu, Chen Ning Yang, Concept of nonintegrable phase factors and global formulation of gauge fields Physical Review D. ,vol. 12, pp. 3845- 3857 ,(1975) , 10.1103/PHYSREVD.12.3845