BICAD: Breast image computer aided diagnosis for standard BIRADS 1 and 2 in calcifications

作者: Elizabeth Lopez-Melendez , Luis David Lara-Rodriguez , Estela Lopez-Olazagasti , Barbara Sanchez-Rinza , Eduardo Tepichin-Rodríguez

DOI: 10.1109/CONIELECOMP.2012.6189907

关键词:

摘要: The Breast Imaging Reporting and Data System (BIRADS) was developed by the American College of Radiologists as a standard comparison for rating mammograms breast ultrasound images. It sets up classification Level Suspicion (LOS) possibility cancer. In this paper we present an automated image analyzing system that finds calcifications based on BIRADS 1 2. For our goal, studied digital mammography database in DICOM format provided Department Radiology Hospital Universitario de Puebla. We used Difference Gaussian (DOG) filter to find edges forms different back-propagation Artificial Neural Network (ANN) pattern recognition 2 cases. This method allowed us automate segmentation with low computational cost. achieved high level sensitivity 0.9629 specificity 0.9920.

参考文章(15)
Justin B. Starren, Stephen M. Johnson, Expressiveness of the Breast Imaging Reporting and Database System (BI-RADS). conference of american medical informatics association. pp. 655- 659 ,(1997)
Alejandro Domínguez Torres, Procesamiento digital de imágenes Perfiles Educativos. ,(1996)
Thomas F. Rathbun, Steven K. Rogers, Randy P. Broussard, Gabor filtering for improved microcalcification detection in digital mammograms ,(1998)
H. Morton, I. Aleksander, An Introduction to Neural Computing ,(1989)
Samuel Oporto-Díaz, Rolando Hernández-Cisneros, Hugo Terashima-Marín, Detection of Microcalcification Clusters in Mammograms Using a Difference of Optimized Gaussian Filters Lecture Notes in Computer Science. pp. 998- 1005 ,(2005) , 10.1007/11559573_121
Rolando R. Hernández-Cisneros, Hugo Terashima-Marín, Santiago E. Conant-Pablos, Comparison of class separability, forward sequential search and genetic algorithms for feature selection in the classification of individual and clustered microcalcifications in digital mammograms international conference on image analysis and recognition. pp. 911- 922 ,(2007) , 10.1007/978-3-540-74260-9_81
Wendie A. Berg, Cristina Campassi, Patricia Langenberg, Mary J. Sexton, Breast Imaging Reporting and Data System: inter- and intraobserver variability in feature analysis and final assessment. American Journal of Roentgenology. ,vol. 174, pp. 1769- 1777 ,(2000) , 10.2214/AJR.174.6.1741769
Shalini Gupta, Priscilla F. Chyn, Mia K. Markey, Breast cancer CADx based on BI-RAds descriptors from two mammographic views. Medical Physics. ,vol. 33, pp. 1810- 1817 ,(2006) , 10.1118/1.2188080
Bin Zheng, Jules H. Sumkin, Walter F. Good, Glenn S. Maitz, Yuan-Hsiang Chang, David Gur, Applying computer-assisted detection schemes to digitized mammograms after JPEG data compression: an assessment. Academic Radiology. ,vol. 7, pp. 595- 602 ,(2000) , 10.1016/S1076-6332(00)80574-7