Subject-specific channel selection for classification of motor imagery electroencephalographic data

作者: Yuan Yang , Olexiy Kyrgyzov , Joe Wiart , Isabelle Bloch

DOI: 10.1109/ICASSP.2013.6637856

关键词:

摘要: Brain-computer interfaces (BCIs) are systems that record brain signals and then classify them to generate computer commands. Keeping a minimal number of channels (electrodes) is essential for developing portable BCIs. Unlike existing methods choosing without optimization time segment classification, this work proposes novel subject-specific channel selection method based on criterion derived from Fisher's discriminant analysis realize the parametrization both positions. The experimental results show can efficiently reduce (from 118 no more than 11), shorten training time, significant decrease classification accuracy standard dataset.

参考文章(12)
Isabelle Bloch, Joe Wiart, Yuan Yang, Yuan Yang, Sylvain Chevallier, Automatic selection of the number of spatial filters for motor-imagery BCI the european symposium on artificial neural networks. pp. 109- 114 ,(2012)
G. Pfurtscheller, C. Brunner, A. Schlögl, F.H. Lopes da Silva, Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks NeuroImage. ,vol. 31, pp. 153- 159 ,(2006) , 10.1016/J.NEUROIMAGE.2005.12.003
Yijun Wang, Shangkai Gao, Xiaorong Gao, Common Spatial Pattern Method for Channel Selelction in Motor Imagery Based Brain-computer Interface international conference of the ieee engineering in medicine and biology society. ,vol. 2005, pp. 5392- 5395 ,(2005) , 10.1109/IEMBS.2005.1615701
F Lotte, M Congedo, A Lécuyer, F Lamarche, B Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces Journal of Neural Engineering. ,vol. 4, pp. 24- ,(2007) , 10.1088/1741-2560/4/2/R01
Alexandre Barachant, Stephane Bonnet, Channel selection procedure using riemannian distance for BCI applications international ieee/embs conference on neural engineering. pp. 348- 351 ,(2011) , 10.1109/NER.2011.5910558
Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe, Klaus-robert Muller, Optimizing Spatial filters for Robust EEG Single-Trial Analysis IEEE Signal Processing Magazine. ,vol. 25, pp. 41- 56 ,(2008) , 10.1109/MSP.2008.4408441
Jonathan R Wolpaw, Niels Birbaumer, Dennis J McFarland, Gert Pfurtscheller, Theresa M Vaughan, Brain-computer interfaces for communication and control. Clinical Neurophysiology. ,vol. 113, pp. 767- 791 ,(2002) , 10.1016/S1388-2457(02)00057-3
Thomas Navin Lal, Michael Schröder, Thilo Hinterberger, Jason Weston, Martin Bogdan, Niels Birbaumer, Bernhard Schölkopf, None, Support vector channel selection in BCI IEEE Transactions on Biomedical Engineering. ,vol. 51, pp. 1003- 1010 ,(2004) , 10.1109/TBME.2004.827827
B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Muller, V. Kunzmann, F. Losch, G. Curio, The Berlin brain-computer interface: EEG-based communication without subject training international conference of the ieee engineering in medicine and biology society. ,vol. 14, pp. 147- 152 ,(2006) , 10.1109/TNSRE.2006.875557
Yuan Yang, S. Chevallier, J. Wiart, I. Bloch, Time-frequency selection in two bipolar channels for improving the classification of motor imagery EEG international conference of the ieee engineering in medicine and biology society. ,vol. 2012, pp. 2744- 2747 ,(2012) , 10.1109/EMBC.2012.6346532