Multiobjective genetic programming: reducing bloat using SPEA2

作者: S. Bleuler , M. Brack , L. Thiele , E. Zitzler

DOI: 10.1109/CEC.2001.934438

关键词:

摘要: … optimization algorithm, SPEA2, is able … SPEA2, which forms the basis for our investigation is briefly sketched in Section 4, and Section 5 describes the experiments results where SPEA2 …

参考文章(15)
Wolfgang Banzhaf, Robert E. Keller, Peter Nordin, Genetic Programming: An Introduction ,(1997)
Tobias Blickle, Evolving Compact Solutions in Genetic Programming: A Case Study parallel problem solving from nature. pp. 564- 573 ,(1996) , 10.1007/3-540-61723-X_1020
Eckart Zitzler, Marco Laumanns, Lothar Thiele, SPEA2: Improving the strength pareto evolutionary algorithm Technical Report, Gloriastrasse 35. ,vol. 103, ,(2001) , 10.3929/ETHZ-A-004284029
William B. Langdon, Data structures and genetic programming Advances in genetic programming. pp. 395- 414 ,(1996)
T. Kalganova, J. Miller, Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness Proceedings of the First NASA/DoD Workshop on Evolvable Hardware. pp. 54- 63 ,(1999) , 10.1109/EH.1999.785435
W. B. Langdon, R. Poli, Fitness Causes Bloat Soft Computing in Engineering Design and Manufacturing. pp. 13- 22 ,(1998) , 10.1007/978-1-4471-0427-8_2
David W. Corne, Joshua D. Knowles, Martin J. Oates, The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation parallel problem solving from nature. pp. 839- 848 ,(2000) , 10.1007/3-540-45356-3_82