Pseudo-randomness and Learning in Quantum Computation

作者: Richard A. Low

DOI:

关键词:

摘要: This thesis discusses the young fields of quantum pseudo-randomness and learning algorithms. We present techniques for derandomising algorithms to decrease randomness resource requirements improve efficiency. One key object in doing this is a k-design, which distribution on unitary group whose kth moments match those unitarily invariant Haar measure. show that natural model random circuit, circuits quickly converges 2-design. then an efficient k-design construction any k, provided number qubits n satisfies k = O(n/log n). In this, we provide tensor product expander, generalisation expander turn generalises classical expanders. discuss applications k-designs. they can be used efficiency many existing protocols also find new large deviation bounds. particular, bound results unitaries carry over k-designs poly(n). second part thesis, some testing Clifford group. optimal algorithm identifying unknown operation. give test if operation close or far from every Clifford.

参考文章(100)
Nabil Kahale, A Semidefinite Bound for Mixing Rates of Markov Chains integer programming and combinatorial optimization. pp. 190- 203 ,(1996) , 10.1007/3-540-61310-2_15
Daniel Gottesman, Daniel Gottesman, Isaac L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations Nature. ,vol. 402, pp. 390- 393 ,(1999) , 10.1038/46503
Nolan R. Wallach, Roe Goodman, Representations and invariants of the classical groups ,(1998)
Adriano Barenco, Artur Ekert, Richard Jozsa, Chiara Macchiavello, David Deutsch, Andre` Berthiaume, Stabilisation of Quantum Computations by Symmetrisation arXiv: Quantum Physics. ,(1996)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
M. B. Hastings, A. W. Harrow, Classical and quantum tensor product expanders Quantum Information & Computation. ,vol. 9, pp. 336- 360 ,(2009) , 10.5555/2011781.2011790
Oscar C. O. Dahlsten, Martin B. Plenio, Entanglement probability distribution of bi-partite randomised stabilizer states Quantum Information & Computation. ,vol. 6, pp. 527- 538 ,(2006) , 10.26421/QIC6.6-5
R. Landauer, Information is Physical Workshop on Physics and Computation. pp. 1- 4 ,(1992) , 10.1109/PHYCMP.1992.615478