Łukasiewicz logic and the foundations of measurement

作者: Michael Katz

DOI: 10.1007/BF02584056

关键词:

摘要: The logic of inexactness, presented in this paper, is a version the Łukasiewicz with predicates valued [0, ∞). We axiomatize multi-valued models equality and ordering guaranteeing their imbeddibility real line. Our axioms ordering, when interpreted as proximity dominance, can be applied to foundations measurement (especially social sciences). In two-valued they provide theories ratio scale measurement. multivalued enable us treat formally errors arising nominal ordinal measurements.

参考文章(12)
Alfred Tarski, What is Elementary Geometry Studies in logic and the foundations of mathematics. ,vol. 27, pp. 16- 29 ,(1959) , 10.1016/S0049-237X(09)70017-5
H. D. Block, Random Orderings and Stochastic Theories of Responses (1960) Research Papers in Economics. pp. 172- 217 ,(1974) , 10.1007/978-94-010-9276-0_8
Dana Scott, Patrick Suppes, Foundational aspects of theories of measurement Journal of Symbolic Logic. ,vol. 23, pp. 113- 128 ,(1958) , 10.2307/2964389
F. William Lawvere, Metric spaces, generalized logic, and closed categories Rendiconti Del Seminario Matematico E Fisico Di Milano. ,vol. 43, pp. 135- 166 ,(1973) , 10.1007/BF02924844
R. Giles, Łukasiewicz logic and fuzzy set theory International Journal of Human-computer Studies \/ International Journal of Man-machine Studies. ,vol. 8, pp. 313- 327 ,(1976) , 10.1016/S0020-7373(76)80003-X
Robert L. Causey, Basic measurement theory Journal of Symbolic Logic. ,vol. 36, pp. 322- 323 ,(1971) , 10.2307/2270274
Robin Giles, A non-classical logic for physics Studia Logica. ,vol. 33, pp. 397- 415 ,(1974) , 10.1007/BF02123379
Clyde Hamilton Coombs, A theory of data ,(1964)
J. A. Goguen, THE LOGIC OF INEXACT CONCEPTS Synthese. ,vol. 19, pp. 325- 373 ,(1969) , 10.1007/BF00485654
Patrick Suppes, Muriel Winet, An Axiomatization of Utility Based on the Notion of Utility Differences Management Science. ,vol. 1, pp. 259- 270 ,(1955) , 10.1287/MNSC.1.3-4.259