Bioenergetic Pathways in the Chloroplast: Photosynthetic Electron Transfer

作者: Philipp Gäbelein , Laura Mosebach , Michael Hippler

DOI: 10.1007/978-3-319-66365-4_4

关键词:

摘要: In this review, we address bioenergetic pathways in the chloroplast of Chlamydomonas reinhardtii, with a focus on photosynthetic electron transfer. The conversion solar energy into chemical by oxygenic photosynthesis, as performed plants, green algae and cyanobacteria, supports life planet. production oxygen (O2) assimilation carbon dioxide (CO2) organic matter determine, to large extent, composition our atmosphere. Plant photosynthesis is conducted series reactions that occur mainly chloroplast, resulting light-dependent H2O oxidation, NADP+ reduction ATP formation. NADPH ATP, produced linear flow (LEF), are required for fixation via Calvin-Benson-Bassham (CBB) cycle. Besides, transfer may operate cyclic (CEF) mode satisfy cellular demand. Electrons derived from LEF also be diverted various other metabolic pathways, e.g. ferredoxin (FDX). addition, evolved maximize its outcome while minimizing photooxidative stress. regard, mechanisms such non-photochemical quenching (NPQ) state transitions regulate influx at different light availabilities, which feedback proton-motive force (pmf) redox plastoquinone/plastoquinol (PQ) pool, thereby regulating CEF. To overcome possible limitations acceptor side photosystem (PSI), alternative evolved, including flavodiiron proteins (FDPs), allowing safe utilization O2 acceptor, well hydrogenase, utilizes two electrons protons produce H2. Nevertheless, reactive species (ROS) formed, Mehler reaction PSI, why utilized detoxification prevent excessive damage. conclusion, interwoven regulatory network aimed adjusting way not harmful cell.

参考文章(221)
Emma L Raven, Latesh Lad, Katherine H Sharp, Martin Mewies, Peter CE Moody, None, Defining substrate specificity and catalytic mechanism in ascorbate peroxidase. Biochemical Society Symposia. ,vol. 71, pp. 27- 38 ,(2004) , 10.1042/BSS0710027
Urs Leisinger, Karin Rüfenacht, Beat Fischer, Manuel Pesaro, Arik Spengler, Alexander J.B. Zehnder, Rik I.L. Eggen, The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Molecular Biology. ,vol. 46, pp. 395- 408 ,(2001) , 10.1023/A:1010601424452
Michel Goldschmidt-Clermont, Roberto Bassi, Sharing light between two photosystems: mechanism of state transitions. Current Opinion in Plant Biology. ,vol. 25, pp. 71- 78 ,(2015) , 10.1016/J.PBI.2015.04.009
M. Hippler, J. Reichert, M. Sutter, E. Zak, L. Altschmied, U. Schröer, R. G. Herrmann, W. Haehnel, The plastocyanin binding domain of photosystem I. The EMBO Journal. ,vol. 15, pp. 6374- 6384 ,(1996) , 10.1002/J.1460-2075.1996.TB01028.X
Martin Aran, Daniel Caporaletti, Alejandro M. Senn, María T. Tellez de Iñon, María R. Girotti, Andrea S. Llera, Ricardo A. Wolosiuk, ATP‐dependent modulation and autophosphorylation of rapeseed 2‐Cys peroxiredoxin FEBS Journal. ,vol. 275, pp. 1450- 1463 ,(2008) , 10.1111/J.1742-4658.2008.06299.X
Mikko Tikkanen, Sanna Rantala, Eva-Mari Aro, Electron flow from PSII to PSI under high light is controlled by PGR5 but not by PSBS. Frontiers in Plant Science. ,vol. 6, pp. 521- 521 ,(2015) , 10.3389/FPLS.2015.00521
Aymeric Goyer, Camilla Haslekås, Myroslawa Miginiac-Maslow, Uwe Klein, Pierre Le Marechal, Jean-Pierre Jacquot, Paulette Decottignies, Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii European Journal of Biochemistry. ,vol. 269, pp. 272- 282 ,(2002) , 10.1046/J.0014-2956.2001.02648.X
W. Van Camp, K. Capiau, M. Van Montagu, D. Inze, L. Slooten, Enhancement of Oxidative Stress Tolerance in Transgenic Tobacco Plants Overproducing Fe-Superoxide Dismutase in Chloroplasts Plant Physiology. ,vol. 112, pp. 1703- 1714 ,(1996) , 10.1104/PP.112.4.1703