Finite-time synchronization for memristor-based neural networks with time-varying delays

作者: Abdujelil Abdurahman , Haijun Jiang , Zhidong Teng

DOI: 10.1016/J.NEUNET.2015.04.015

关键词:

摘要: … paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-… conditions ensuring the finite-time synchronization of memristor-based chaotic …

参考文章(28)
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
Yu. S. Ledyaev, P. R. Wolenski, F. H. Clarke, R. J. Stern, Nonsmooth analysis and control theory Springer-Verlag New York, Inc.. ,(1998)
Guodong Zhang, Yi Shen, New Algebraic Criteria for Synchronization Stability of Chaotic Memristive Neural Networks With Time-Varying Delays IEEE Transactions on Neural Networks. ,vol. 24, pp. 1701- 1707 ,(2013) , 10.1109/TNNLS.2013.2264106
Ailong Wu, Shiping Wen, Zhigang Zeng, Synchronization control of a class of memristor-based recurrent neural networks Information Sciences. ,vol. 183, pp. 106- 116 ,(2012) , 10.1016/J.INS.2011.07.044
Shiping Wen, Gang Bao, Zhigang Zeng, Yiran Chen, Tingwen Huang, Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays Neural Networks. ,vol. 48, pp. 195- 203 ,(2013) , 10.1016/J.NEUNET.2013.10.001
Jiejie Chen, Zhigang Zeng, Ping Jiang, Global exponential almost periodicity of a delayed memristor-based neural networks Neural Networks. ,vol. 60, pp. 33- 43 ,(2014) , 10.1016/J.NEUNET.2014.07.007
Xiaoyang Liu, Ju H. Park, Nan Jiang, Jinde Cao, Nonsmooth finite-time stabilization of neural networks with discontinuous activations Neural Networks. ,vol. 52, pp. 25- 32 ,(2014) , 10.1016/J.NEUNET.2014.01.004
Xiaoyang Liu, Daniel W.C. Ho, Wenwu Yu, Jinde Cao, A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks Neural Networks. ,vol. 57, pp. 94- 102 ,(2014) , 10.1016/J.NEUNET.2014.05.025
Yuriy V. Pershin, Massimiliano Di Ventra, Experimental demonstration of associative memory with memristive neural networks Neural Networks. ,vol. 23, pp. 881- 886 ,(2010) , 10.1016/J.NEUNET.2010.05.001