Prime constellations in triangles with binomial coefficient congruences

作者: Larry Ericksen

DOI:

关键词:

摘要: The primality of numbers, or a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set integers containing all prime numbers. By analyzing these congruences, we can verify the primality any number. We present different arrangements coefficient elements Pascal’s triangle, such as by the row shift method Mann and Shanks especially the diagonal representation Ericksen. Primes linear polynomial forms are identified congruences their associated coefficients. This testing extended to triangle created $q$-binomial Gaussian coefficients, using with cyclotomic polynomials a modulus. apply Kummer’s $p$-ary find constellations. Aside capacity numbers in binomial triangles, used to identify properties of composite represented distinct factors pairs.

参考文章(9)
Andrzej Schinzel, Wacław Sierpiński, Sur certaines hypothèses concernant les nombres premiers Acta Arithmetica. ,vol. 4, pp. 185- 208 ,(1958) , 10.4064/AA-4-3-185-208
Heiko Harborth, Prime Number Criteria in Pascal's Triangle Journal of the London Mathematical Society. ,vol. s2-16, pp. 184- 190 ,(1977) , 10.1112/JLMS/S2-16.2.184
Tony Forbes, Richard Crandall, Carl Pomerance, Prime numbers : a computational perspective The Mathematical Gazette. ,vol. 86, pp. 552- 554 ,(2002) , 10.2307/3621190
Heiko Harborth, Ein Primzahlkriterium nach Mann und Shanks Archiv der Mathematik. ,vol. 27, pp. 290- 294 ,(1976) , 10.1007/BF01224673
Henry B Mann, Daniel Shanks, A necessary and sufficient condition for primality, and its source Journal of Combinatorial Theory, Series A. ,vol. 13, pp. 131- 134 ,(1972) , 10.1016/0097-3165(72)90016-7
Karl Dilcher, Kenneth B. Stolarsky, A Pascal-Type Triangle Characterizing Twin Primes American Mathematical Monthly. ,vol. 112, pp. 673- 681 ,(2005) , 10.2307/30037570
Richard H. Hudson, Kenneth S. Williams, A divisibility property of binomial coefficients viewed as an elementary sieve International Journal of Mathematics and Mathematical Sciences. ,vol. 4, pp. 731- 743 ,(1981) , 10.1155/S0161171281000562
Larry Ericksen, Iterated digit sums, recursions and primality Acta Mathematica Universitatis Ostraviensis. ,vol. 14, pp. 27- 35 ,(2006)
Eric W. Weisstein, Distinct Prime Factors Wolfram Research, Inc.. ,(2000)