Bayesian Filtering for Jump-Diffusions With Application to Stochastic Volatility

作者: Andrew Golightly

DOI: 10.1198/JCGS.2009.07137

关键词:

摘要: In this article, the problem of sequentially learning parameters governing discretely observed jump-diffusions is explored. The estimation framework involves introduction latent points between every pair observations to allow a sufficiently accurate Euler–Maruyama approximation underlying (but unavailable) transition densities. Particle filtering algorithms are then implemented sample posterior distribution data and model online. methodology applied stochastic volatility (SV) with jumps. As well as using S&P 500 Index data, simulation study provided. Supplemental materials for article available

参考文章(36)
Peter E Kloeden, Eckhard Platen, Matthias Gelbrich, Werner Romisch, Numerical Solution of Stochastic Differential Equations ,(1992)
Davide Raggi, Silvano Bordignon, Comparing stochastic volatility models through Monte Carlo simulations Computational Statistics & Data Analysis. ,vol. 50, pp. 1678- 1699 ,(2006) , 10.1016/J.CSDA.2005.02.004
Michael S. Johannes, Nicholas G. Polson, Jonathan R. Stroud, Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices Review of Financial Studies. ,vol. 22, pp. 2759- 2799 ,(2009) , 10.1093/RFS/HHN110
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
Andrew Golightly, Darren J. Wilkinson, Bayesian sequential inference for nonlinear multivariate diffusions Statistics and Computing. ,vol. 16, pp. 323- 338 ,(2006) , 10.1007/S11222-006-9392-X
Garland B Durham, A. Ronald Gallant, Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes Journal of Business & Economic Statistics. ,vol. 20, pp. 297- 338 ,(2002) , 10.1198/073500102288618397
Andrew Golightly, Darren J. Wilkinson, Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models Journal of Computational Biology. ,vol. 13, pp. 838- 851 ,(2006) , 10.1089/CMB.2006.13.838
Carlo Berzuini, Nicola G Best, Walter R Gilks, Cristiana Larizza, None, Dynamic Conditional Independence Models and Markov Chain Monte Carlo Methods Journal of the American Statistical Association. ,vol. 92, pp. 1403- 1412 ,(1997) , 10.1080/01621459.1997.10473661