GLIM for Latent Class Analysis

作者: Juni Palmgren , Anders Ekholm

DOI: 10.1007/978-1-4615-7070-7_14

关键词:

摘要: We show that latent class models are exponential family nonlinear models. These extended generalized linear with the link function substituted by an observationwise defined of model parameters. Latent can be fitted using OWN-facility in GLIM. analyse a set data which Clogg and Goodman (1984) EM algorithm. The necessary GLIM macros discussed.

参考文章(9)
R. Thompson, R. J. Baker, Composite Link Functions in Generalized Linear Models Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 30, pp. 125- 131 ,(1981) , 10.2307/2346381
Peter McCullagh, John Ashworth Nelder, Generalized Linear Models ,(1983)
Clifford C. Clogg, Leo A. Goodman, Latent Structure Analysis of a Set of Multidimensional Contingency Tables Journal of the American Statistical Association. ,vol. 79, pp. 762- 771 ,(1984) , 10.1080/01621459.1984.10477093
D. Collett, R. J. Baker, J. A. Nelder, The GLIM System Release 3. Biometrics. ,vol. 35, pp. 527- ,(1979) , 10.2307/2530359
Bent Jørgensen, Bent Jorgensen, The Delta Algorithm and GLIM International Statistical Review. ,vol. 52, pp. 283- ,(1984) , 10.2307/1403047
Christopher Cox, Generalized Linear Models—The Missing Link Applied statistics. ,vol. 33, pp. 18- 24 ,(1984) , 10.2307/2347658
P. J. Green, Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and Some Robust and Resistant Alternatives Journal of the royal statistical society series b-methodological. ,vol. 46, pp. 149- 170 ,(1984) , 10.1111/J.2517-6161.1984.TB01288.X
P. McCullagh, J. A. Nelder, Generalized Linear Models Springer US. ,(1983) , 10.1007/978-1-4899-3244-0