Minimax Adaptive Generalized Ridge Regression Estimators

作者: William E. Strawderman

DOI: 10.1080/01621459.1978.10480066

关键词:

摘要: Abstract We consider the problem of estimating vector regression coefficients a linear model using generalized ridge estimators where constant is chosen on basis data. For general quadratic loss we produce such whose risk function dominates that least squares procedure provided number regressors at three. study by usual reduction to mean multivariate normal distribution. Our results minimax estimation in this context are independent interest.

参考文章(17)
W. James, Charles Stein, Estimation with Quadratic Loss Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. pp. 443- 460 ,(1992) , 10.1007/978-1-4612-0919-5_30
Charles Stein, Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. pp. 197- 206 ,(1956)
M. E. Bock, Minimax Estimators of the Mean of a Multivariate Normal Distribution Annals of Statistics. ,vol. 3, pp. 209- 218 ,(1975) , 10.1214/AOS/1176343009
A. J. Baranchik, A Family of Minimax Estimators of the Mean of a Multivariate Normal Distribution Annals of Mathematical Statistics. ,vol. 41, pp. 642- 645 ,(1970) , 10.1214/AOMS/1177697104
Arthur E. Hoerl, Robert W. Kennard, Ridge regression iterative estimation of the biasing parameter Communications in Statistics-theory and Methods. ,vol. 5, pp. 77- 88 ,(1976) , 10.1080/03610927608827333
Arthur E. Hoerl, Robert W. Kennard, Ridge Regression: Applications to Nonorthogonal Problems Technometrics. ,vol. 12, pp. 69- 82 ,(1970) , 10.1080/00401706.1970.10488635
P. K. Bhattacharya, Estimating the Mean of a Multivariate Normal Population with General Quadratic Loss Function Annals of Mathematical Statistics. ,vol. 37, pp. 1819- 1824 ,(1966) , 10.1214/AOMS/1177699174
Lawrence D. Brown, Estimation with Incompletely Specified Loss Functions (the Case of Several Location Parameters) Journal of the American Statistical Association. ,vol. 70, pp. 417- 427 ,(1975) , 10.1080/01621459.1975.10479883
Lawrence David Brown, On the Admissibility of Invariant Estimators of One or More Location Parameters Annals of Mathematical Statistics. ,vol. 37, pp. 1087- 1136 ,(1966) , 10.1214/AOMS/1177699259