Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions

作者: L. Herrera , J. Ponce de León

DOI: 10.1063/1.526813

关键词:

摘要: Some exact analytical solutions of the static Einstein–Maxwell equations for perfect and anisotropic fluids were found under assumption spherical symmetry existence a one‐parameter group conformal motions. All are matched to Reissner‘xnNordstrom metric possess positive energy density larger than stresses, everywhere within sphere.

参考文章(14)
V. Canuto, NEUTRON STARS: GENERAL REVIEW Annals of the New York Academy of Sciences. ,vol. 302, pp. 514- 527 ,(1977) , 10.1111/J.1749-6632.1977.TB37069.X
A. L. Mehra, M. L. Bohra, A solution for a charged sphere in general relativity General Relativity and Gravitation. ,vol. 11, pp. 333- 336 ,(1979) , 10.1007/BF00759275
W. B. Bonnor, The mass of a static charged sphere European Physical Journal. ,vol. 160, pp. 59- 65 ,(1960) , 10.1007/BF01337478
Patrick G. Whitman, Richard C. Burch, Charged spheres in general relativity Physical Review D. ,vol. 24, pp. 2049- 2055 ,(1981) , 10.1103/PHYSREVD.24.2049
F. I. Cooperstock, V. de la Cruz, Sources for the Reissner-Nordstrom metric General Relativity and Gravitation. ,vol. 9, pp. 835- 843 ,(1978) , 10.1007/BF00760872
Ramesh Tikekar, Spherical charged fluid distributions in general relativity Journal of Mathematical Physics. ,vol. 25, pp. 1481- 1483 ,(1984) , 10.1063/1.526318
L. Landau, E. Lifshitz, William Rarita, The Classical Theory of Fields Physics Today. ,vol. 5, pp. 25- 25 ,(1952) , 10.1063/1.3067575
D. N. Pant, A. Sah, Charged fluid sphere in general relativity Journal of Mathematical Physics. ,vol. 20, pp. 2537- 2539 ,(1979) , 10.1063/1.524059
L. Herrera, J. Jiménez, L. Leal, J. Ponce de León, M. Esculpi, V. Galina, Anisotropic fluids and conformal motions in general relativity Journal of Mathematical Physics. ,vol. 25, pp. 3274- 3278 ,(1984) , 10.1063/1.526075