The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates.

作者: K. S. Dulai , D. M. Hunt , J. D. Mollon , M. Von Dornum

DOI: 10.1101/GR.9.7.629

关键词:

摘要: Trichromacy in all Old World primates is dependent on separate X-linked MW and LW opsin genes that are organized into a head-to-tail tandem array flanked the upstream side by locus control region (LCR). The 5' regions of these two show homology for only first 236 bp, although within this region, differences conserved humans, chimpanzees, species cercopithecoid monkeys. In contrast, most New have single polymorphic gene; males dichromats trichromacy achieved those females possess different form gene each X chromosome. By sequencing monkey, marmoset, we been able to demonstrate presence an LCR equivalent position primates. Moreover, marmoset sequence shows extensive from coding with human gene, distance >3 kb, whereas again limited indicating divergent identifies site insertion duplicated gene. This further supported incomplete Alu element point both humans additional elements present upstream. Therefore, may involved initial duplication also be responsible high frequency loss array. Full one howler which present. contrast however, sequences at least 600 well beyond divergence genes, associated LCR, monkey entire region. [The data described paper submitted GenBank under accession nos. AF155218, AF156715, AF156716.]

参考文章(31)
S S Deeb, S A Shaaban, Functional analysis of the promoters of the human red and green visual pigment genes. Investigative Ophthalmology & Visual Science. ,vol. 39, pp. 885- 896 ,(1998)
R Heilig, G Palmieri, M d'Urso, J L Mandel, I Oberlé, R Feil, Physical and genetic mapping of polymorphic loci in Xq28 (DXS15, DXS52, and DXS134): analysis of a cosmid clone and a yeast artificial chromosome. American Journal of Human Genetics. ,vol. 46, pp. 720- 728 ,(1990)
A.J. Williams, D.M. Hunt, J.K. Bowmaker, J.D. Mollon, The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. The EMBO Journal. ,vol. 11, pp. 2039- 2045 ,(1992) , 10.1002/J.1460-2075.1992.TB05261.X
D Y Teller, S S Deeb, A G Motulsky, D T Lindsey, Y Hibiya, E Sanocki, J Winderickx, Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. American Journal of Human Genetics. ,vol. 51, pp. 687- 700 ,(1992)
S. Shyue, D. Hewett-Emmett, H. Sperling, D. Hunt, J. Bowmaker, J. Mollon, W. Li, Adaptive evolution of color vision genes in higher primates Science. ,vol. 269, pp. 1265- 1267 ,(1995) , 10.1126/SCIENCE.7652574
Yanshu Wang, Jennifer P. Macke, Shannath L. Merbs, Donald J. Zack, Brenda Klaunberg, Jean Bennett, John Gearhart, Jeremy Nathans, A locus control region adjacent to the human red and green visual pigment genes Neuron. ,vol. 9, pp. 429- 440 ,(1992) , 10.1016/0896-6273(92)90181-C
Madeleine J. Meagher, A. Lund Jorgensen, Samir S. Deeb, Sequence and evolutionary history of the length polymorphism in intron 1 of the human red photopigment gene Journal of Molecular Evolution. ,vol. 43, pp. 622- 630 ,(1996) , 10.1007/BF02202110
Michael C. Hanna, James T. Platts, Ewen F. Kirkness, Identification of a gene within the tandem array of red and green color pigment genes. Genomics. ,vol. 43, pp. 384- 386 ,(1997) , 10.1006/GENO.1997.4830
J Nathans, D Thomas, D. Hogness, Molecular genetics of human color vision: the genes encoding blue, green, and red pigments Science. ,vol. 232, pp. 193- 202 ,(1986) , 10.1126/SCIENCE.2937147
Jeremy Nathans, Carol M Davenport, Irene H Maumenee, Richard Alan Lewis, J Fielding Hejtmancik, Michael Litt, Everett Lovrien, Richard Weleber, Brian Bachynski, Fred Zwas, Roger Klingaman, Gerald Fishman, Molecular genetics of human blue cone monochromacy Science. ,vol. 245, pp. 831- 838 ,(1989) , 10.1126/SCIENCE.2788922