Machine learning for the diagnosis of early-stage diabetes using temporal glucose profiles

作者: Junghyo Jo , Woo Seok Lee , Taegeun Song

DOI: 10.1007/S40042-021-00056-8

关键词:

摘要: Machine learning shows remarkable success for recognizing patterns in data. Here, we apply machine (ML) the diagnosis of early-stage diabetes, which is known as a challenging task medicine. Blood glucose levels are tightly regulated by two counter-regulatory hormones, insulin and glucagon, failure homeostasis leads to common metabolic disease, diabetes mellitus. It chronic disease that has long latent period complicates detection at an early stage. The vast majority cases result from diminished effectiveness action, resistance modifies temporal profile blood glucose. Thus, propose use ML detect subtle changes pattern concentration. Time series data on with sufficient resolution currently unavailable, so confirm proposal using synthetic profiles produced biophysical model considers regulation hormone action. Multi-layered perceptrons, convolutional neural networks, recurrent networks all identified degree high accuracy above $$85\%$$ .

参考文章(28)
G. M. Reaven, Pathophysiology of insulin resistance in human disease Physiological Reviews. ,vol. 75, pp. 473- 486 ,(1995) , 10.1152/PHYSREV.1995.75.3.473
Pasquale Palumbo, Susanne Ditlevsen, Alessandro Bertuzzi, Andrea De Gaetano, Mathematical modeling of the glucose–insulin system: A review Bellman Prize in Mathematical Biosciences. ,vol. 244, pp. 69- 81 ,(2013) , 10.1016/J.MBS.2013.05.006
Mitsuhisa Komatsu, Masahiro Takei, Hiroaki Ishii, Yoshihiko Sato, Glucose-stimulated insulin secretion: A newer perspective Journal of Diabetes Investigation. ,vol. 4, pp. 511- 516 ,(2013) , 10.1111/JDI.12094
IVA MARIJA TOLIĆ, ERIK MOSEKILDE, JEPPE STURIS, Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. Journal of Theoretical Biology. ,vol. 207, pp. 361- 375 ,(2000) , 10.1006/JTBI.2000.2180
D. A. Lang, D. R. Matthews, J. Peto, R. C. Turner, Cyclic Oscillations of Basal Plasma Glucose and Insulin Concentrations in Human Beings New England Journal of Medicine. ,vol. 301, pp. 1023- 1027 ,(1979) , 10.1056/NEJM197911083011903
Philippe Esling, Carlos Agon, Time-series data mining ACM Computing Surveys. ,vol. 45, pp. 1- 34 ,(2012) , 10.1145/2379776.2379788
Jacob C. Seidell, Obesity, insulin resistance and diabetes — a worldwide epidemic British Journal of Nutrition. ,vol. 83, ,(2000) , 10.1017/S000711450000088X
Dong Zhou, Mark Truran, Tim Brailsford, Vincent Wade, Helen Ashman, Translation techniques in cross-language information retrieval ACM Computing Surveys. ,vol. 45, pp. 1- 44 ,(2012) , 10.1145/2379776.2379777
Gerold M. Grodsky, A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling Journal of Clinical Investigation. ,vol. 51, pp. 2047- 2059 ,(1972) , 10.1172/JCI107011