Conformal invariance of the writhe of a knot

作者: R. Langevin , J. O'Hara

DOI:

关键词:

摘要: We give a new proof of an old theorem by Banchoff and White 1975 that claims the writhe knot is conformally invariant.

参考文章(7)
Grant Cairns, Richard Sharpe, Lynette Webb, Conformal Invariants for Curves and Surfaces in Three Dimensional Space Forms Rocky Mountain Journal of Mathematics. ,vol. 24, pp. 933- 959 ,(1994) , 10.1216/RMJM/1181072381
James H. White, Self-Linking and the Gauss Integral in Higher Dimensions American Journal of Mathematics. ,vol. 91, pp. 693- ,(1969) , 10.2307/2373348
James H. White, William R. Bauer, Calculation of the twist and the writhe for representative models of DNA Journal of Molecular Biology. ,vol. 189, pp. 329- 341 ,(1986) , 10.1016/0022-2836(86)90513-9
F. B. Fuller, Decomposition of the linking number of a closed ribbon: A problem from molecular biology Proceedings of the National Academy of Sciences of the United States of America. ,vol. 75, pp. 3557- 3561 ,(1978) , 10.1073/PNAS.75.8.3557
F. B. Fuller, The writhing number of a space curve Proceedings of the National Academy of Sciences of the United States of America. ,vol. 68, pp. 815- 819 ,(1971) , 10.1073/PNAS.68.4.815
G. Călugăreanu, Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants Czechoslovak Mathematical Journal. ,vol. 11, pp. 588- 625 ,(1961) , 10.21136/CMJ.1961.100486
R. Langevin, J. O’Hara, CONFORMALLY INVARIANT ENERGIES OF KNOTS Journal of The Institute of Mathematics of Jussieu. ,vol. 4, pp. 219- 280 ,(2005) , 10.1017/S1474748005000058