Spin Calogero models obtained from dynamical r-matrices and geodesic motion

作者: L Fehér , BG Pusztai , None

DOI: 10.1016/J.NUCLPHYSB.2005.11.025

关键词:

摘要: We study classical integrable systems based on the Alekseev–Meinrenken dynamical r-matrices corresponding to automorphisms of self-dual Lie algebras, G. prove that these are uniquely characterized by a non-degeneracy property and apply construction due Li Xu associate spin Calogero type models with them. The equation motion any model this is found be projection natural geodesic group G algebra G, its phase space interpreted as Hamiltonian reduction an open submanifold cotangent bundle T∗G, using symmetry arising from adjoint action twisted underlying automorphism. This shows integrability resulting gives algorithm solve As illustrative examples we present new built involutive diagram real split compact simple also explain many further fit in r-matrix framework.

参考文章(54)
Luen-Chau Li, Ping Xu, Integrable spin Calogero-Moser systems arXiv: Quantum Algebra. ,(2001) , 10.1007/S00220-002-0724-1
Giovanni Felder, Conformal Field Theory and Integrable Systems Associated to Elliptic Curves arXiv: High Energy Physics - Theory. pp. 1247- 1255 ,(1995) , 10.1007/978-3-0348-9078-6_119
E. K. Sklyanin, Dynamical r-matrices for the Elliptic Calogero-Moser Model arXiv: High Energy Physics - Theory. ,(1993)
Luen-Chau Li, Coboundary dynamical Poisson groupoids and integrable systems International Mathematics Research Notices. ,vol. 2003, pp. 2725- 2746 ,(2003) , 10.1155/S1073792803130723
L. Feher, B. G. Pusztai, Spin Calogero models and dynamical r-matrices arXiv: Mathematical Physics. ,(2005)
E. Billey, J. Avan, O. Babelon, The r-matrix structure of the Euler-Calogero-Moser model Physics Letters A. ,vol. 186, pp. 114- 118 ,(1994) , 10.1016/0375-9601(94)90930-X