ON THE SOLUTIONS OF HALPHEN'S EQUATION

作者: Karl Unterkofler

DOI:

关键词:

摘要: We study Halphen's equation and provide solutions in terms of elliptic functions the second kind. The connection between Hal- phen's algebro-geometric Boussinesq hier- archy is discussed.

参考文章(32)
V. B. Matveev, A. O. Smirnov, Simplest trigonal solutions of the Boussinesq and Kadomtsev-Petviashvili equations Akademiia Nauk SSSR Doklady. ,vol. 293, pp. 202- ,(1987)
I. A. Stegun, M. Abramowitz, Handbook of Mathematical Functions hmfw. ,(1972)
A. Fonda, Michal Fečkan, A. Cañada, Flaviano Battelli, P. (Pavel) Drabek, Ordinary differential equations Elsevier North Holland. ,(2004)
V. F. Gerdt, N. A. Kostov, Computer Algebra in the Theory of Ordinary Differential Equations of Halphen Type Computers and Mathematics. pp. 279- 288 ,(1989) , 10.1007/978-1-4613-9647-5_32
George Wilson, Algebraic curves and soliton equations Birkhäuser Boston. ,(1985)
John Christopher Eilbeck, V Z Enol'skii, D V Leykin, On the Kleinian construction of Abelian functions of canonical algebraic curves pp. 121- 138 ,(2000)
Rudi Weikard, On rational and periodic solutions of stationary KdV equations Documenta Mathematica. ,vol. 4, pp. 107- 126 ,(1999)
Fritz Gesztesy, Rudi Weikard, A characterization of elliptic finite-gap potentials Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 321, pp. 837- 841 ,(1995)