On k-Jet Ampleness

作者: Mauro C. Beltrametti , Andrew J. Sommese

DOI: 10.1007/978-1-4757-9771-8_15

关键词:

摘要: Let X be an n-dimensional projective manifold mapped into a space Ψ:X → ℙℂ. L the pullback, Ψ*Oℙℂ(1), of hyperplane section bundle. If Ψ is embedding, said to very ample. This intensively studied and well-understood concept. In this chapter we study particular notion higher-order embedding. We say that k-jet ample for nonnegative integer k if, given any r integers 1 , ., such \( + = \sum\nolimits_{i 1}^r {{k_i}} \) distinct points {x ,. . x } ⊂ X, evaluation map $$ \times \Gamma (L) \to L/L \otimes m_{{x_1}}^{{k_1}} ... m_{xr}^{{k_r}} 0 $$ is surjective, where m xi denotes maximal ideal at t Note spanned (respectively, ample) if only 0-jet 1-jet ample).

参考文章(18)
Mauro Beltrametti, Andrew J. Sommese, On K-spannedness for projective surfaces Lecture Notes in Mathematics. pp. 24- 51 ,(1990) , 10.1007/BFB0083331
Gottfried Barthel, Friedrich Hirzebruch, Thomas Höfer, Geradenkonfigurationen und algebraische Flächen Vieweg. ,(1987) , 10.1007/978-3-322-92886-3
F. Hirzebruch, Arrangements of Lines and Algebraic Surfaces Arithmetic and Geometry. pp. 113- 140 ,(1983) , 10.1007/978-1-4757-9286-7_7
Jean-Pierre Demailly, A numerical criterion for very ample line bundles Journal of Differential Geometry. ,vol. 37, pp. 323- 374 ,(1993) , 10.4310/JDG/1214453680
Robin Hartshorne, Ample Vector Bundles on Curves Nagoya Mathematical Journal. ,vol. 43, pp. 73- 89 ,(1971) , 10.1017/S0027763000014379
Andrew John Sommese, Antonio Lanteri, Marino Palleschi, Very ampleness of K_X otimes^L^dimX for ample and spanned line bundles L Osaka Journal of Mathematics. ,vol. 26, pp. 647- 664 ,(1989) , 10.18910/6873
Andrew John Sommese, A. van de Ven, Homotopy groups of pullbacks of varieties Nagoya Mathematical Journal. ,vol. 102, pp. 79- 90 ,(1986) , 10.1017/S002776300000043X
Yujiro Kawamata, A Generalization of Kodaira-Ramanujam's Vanishing Theorem. Mathematische Annalen. ,vol. 261, pp. 43- 46 ,(1982) , 10.1007/BF01456407
Andrew John Sommese, On the density of ratios of Chern numbers of algebraic surfaces Mathematische Annalen. ,vol. 268, pp. 207- 221 ,(1984) , 10.1007/BF01456086
Andrew John Sommese, Compact complex manifolds possessing a line bundle with a trivial jet bundle: To Professor Erich Kxhler Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 47, pp. 79- 91 ,(1978) , 10.1007/BF02941353