Utilization of electrochemical impedance spectroscopy for monitoring pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans

作者: Yun Liu , Zhi Dang , Guining Lu , Pingxiao Wu , Chunhua Feng

DOI: 10.1016/J.MINENG.2011.03.002

关键词:

摘要: Abstract In this work, the electrochemical behavior of a pyrite–carbon paste electrode in presence and absence Acidithiobacillus ferrooxidans was investigated by impedance spectroscopy (EIS) conjunction with X-ray photoelectron (XPS). The EIS responses varied over time both inoculated sterile solution, suggesting change kinetic processes at pyrite-solution interface during leaching process. pyrite oxidation rate initially controlled iron moiety dissolution systems without bacteria, formation intermediate products such as elemental sulfur polysulfide surface pyrite. these could further be oxidized to SO 4 2 - . However, S solution undetectable measurement. These results were also confirmed XPS measurements, which showed that microorganisms able remove from surface.

参考文章(28)
H.K. Lin, W.C. Say, Study of pyrite oxidation by cyclic voltammetric, impedance spectroscopic and potential step techniques Journal of Applied Electrochemistry. ,vol. 29, pp. 987- 994 ,(1999) , 10.1023/A:1003578728263
C. Mustin, J. Berthelin, P. Marion, P. de Donato, Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans. Applied and Environmental Microbiology. ,vol. 58, pp. 1175- 1182 ,(1992) , 10.1128/AEM.58.4.1175-1182.1992
Melvin P. Silverman, Mechanism of Bacterial Pyrite Oxidation Journal of Bacteriology. ,vol. 94, pp. 1046- 1051 ,(1967) , 10.1128/JB.94.4.1046-1051.1967
Magdalena Gleisner, Roger B. Herbert, Paul C. Frogner Kockum, Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen Chemical Geology. ,vol. 225, pp. 16- 29 ,(2006) , 10.1016/J.CHEMGEO.2005.07.020
Shao-yuan Shi, Zhao-heng Fang, Jin-ren Ni, Comparative study on the bioleaching of zinc sulphides Process Biochemistry. ,vol. 41, pp. 438- 446 ,(2006) , 10.1016/J.PROCBIO.2005.07.008
Hongmei Wang, Jerry M. Bigham, Olli H. Tuovinen, Oxidation of marcasite and pyrite by iron-oxidizing bacteria and archaea Hydrometallurgy. ,vol. 88, pp. 127- 131 ,(2007) , 10.1016/J.HYDROMET.2007.03.010
Shao-yuan Shi, Zhao-heng Fang, Jin-ren Ni, Electrochemistry of marmatite – carbon paste electrode in the presence of bacterial strains Bioelectrochemistry. ,vol. 68, pp. 113- 118 ,(2006) , 10.1016/J.BIOELECHEM.2005.05.006
Elsa M Arce, Ignacio González, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in sulfuric acid solution International Journal of Mineral Processing. ,vol. 67, pp. 17- 28 ,(2002) , 10.1016/S0301-7516(02)00003-0
Denise Bevilaqua, Heloisa A. Acciari, Fabiana A. Arena, Assis V. Benedetti, Cecílio S. Fugivara, Germano Tremiliosi Filho, Oswaldo Garcia Júnior, Utilization of electrochemical impedance spectroscopy for monitoring bornite (Cu5FeS4) oxidation by Acidithiobacillus ferrooxidans Minerals Engineering. ,vol. 22, pp. 254- 262 ,(2009) , 10.1016/J.MINENG.2008.07.010
I. Palencia, R. Y. Wan, J. D. Miller, The electrochemical behavior of a semiconducting natural pyrite in the presence of bacteria Metallurgical and Materials Transactions B-process Metallurgy and Materials Processing Science. ,vol. 22, pp. 765- 774 ,(1991) , 10.1007/BF02651153