Optimized Product Quantization for Approximate Nearest Neighbor Search

作者: Tiezheng Ge , Kaiming He , Qifa Ke , Jian Sun

DOI: 10.1109/CVPR.2013.379

关键词:

摘要: Product quantization is an effective vector approach to compactly encode high-dimensional vectors for fast approximate nearest neighbor (ANN) search. The essence of product decompose the original space into Cartesian a finite number low-dimensional subspaces that are then quantized separately. Optimal decomposition important performance ANN search, but still remains unaddressed. In this paper, we optimize by minimizing distortions w.r.t. and codebooks. We present two novel methods optimization: non-parametric method alternatively solves smaller sub-problems, parametric guaranteed achieve optimal solution if input data follows some Gaussian distribution. show experiments our optimized substantially improves accuracy

参考文章(19)
Augustin-Louis Cauchy, COURS D'ANALYSE DE L'ÉCOLE ROYALE POLYTECHNIQUE Oeuvres complètes. pp. 17- 30 ,(2009) , 10.1017/CBO9780511702525.003
Aude Oliva, Antonio Torralba, Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope International Journal of Computer Vision. ,vol. 42, pp. 145- 175 ,(2001) , 10.1023/A:1011139631724
Jonathan Brandt, Transform coding for fast approximate nearest neighbor search in high dimensions computer vision and pattern recognition. pp. 1815- 1822 ,(2010) , 10.1109/CVPR.2010.5539852
Herve Jegou, Matthijs Douze, Cordelia Schmid, Patrick Perez, Aggregating local descriptors into a compact image representation computer vision and pattern recognition. pp. 3304- 3311 ,(2010) , 10.1109/CVPR.2010.5540039
Kaiming He, Fang Wen, Jian Sun, K-Means Hashing: An Affinity-Preserving Quantization Method for Learning Binary Compact Codes computer vision and pattern recognition. pp. 2938- 2945 ,(2013) , 10.1109/CVPR.2013.378
Jun Wang, Sanjiv Kumar, Shih-Fu Chang, Semi-supervised hashing for scalable image retrieval computer vision and pattern recognition. pp. 3424- 3431 ,(2010) , 10.1109/CVPR.2010.5539994
Peter H. Schönemann, A generalized solution of the orthogonal procrustes problem Psychometrika. ,vol. 31, pp. 1- 10 ,(1966) , 10.1007/BF02289451
Yunchao Gong, Svetlana Lazebnik, Iterative quantization: A procrustean approach to learning binary codes computer vision and pattern recognition. pp. 817- 824 ,(2011) , 10.1109/CVPR.2011.5995432
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)
H Jégou, M Douze, C Schmid, Product Quantization for Nearest Neighbor Search IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 33, pp. 117- 128 ,(2011) , 10.1109/TPAMI.2010.57