Revisiting probabilistic neural networks: a comparative study with support vector machines and the microhabitat suitability for the Eastern Iberian chub (Squalius valentinus)

作者: Rafael Muñoz-Mas , Shinji Fukuda , Javier Pórtoles , Francisco Martínez-Capel

DOI: 10.1016/J.ECOINF.2017.10.008

关键词:

摘要: Abstract Probabilistic Neural Networks (PNNs) and Support Vector Machines (SVMs) are flexible classification techniques suited to render trustworthy species distribution habitat suitability models. Although several alternatives improve PNNs' reliability performance and/or reduce computational costs exist, PNNs currently not well recognised as SVMs because the were compared with standard PNNs. To rule out this idea, microhabitat for Eastern Iberian chub (Squalius valentinus Doadrio & Carmona, 2006) was modelled four types of (homoscedastic, heteroscedastic, cluster enhanced PNNs); all them optimised Differential Evolution. The fitness function criteria (correctly classified instances, true skill statistic, specificity sensitivity) partial dependence plots used assess respectively each model. Heteroscedastic achieved highest in every index but specificity. However, these two rendered ecologically unreliable plots. Conversely, homoscedastic reliable Thus, proved be a eurytopic species, presenting microhabitats cover present, low flow velocity (approx. 0.3 m/s), intermediate depth 0.6 m) fine gravel (64–256 mm). outperformed SVMs; thus, based on results PNN, which also showed high values criteria, we would advocate combination approaches (e.g., heteroscedastic or PNNs) balance trade-off between accuracy

参考文章(127)
Leonidas Vardakas, Eleni Kalogianni, Christina Papadaki, Theocharis Vavalidis, Angeliki Mentzafou, Drosos Koutsoubas, Nikolaos Skoulikidis Th, None, Defining critical habitat conditions for the conservation of three endemic and endangered cyprinids in a Mediterranean intermittent river before the onset of drought Aquatic Conservation-marine and Freshwater Ecosystems. ,vol. 27, pp. 1270- 1280 ,(2017) , 10.1002/AQC.2735
R Core Team, R: A language and environment for statistical computing. MSOR connections. ,vol. 1, ,(2014)
Azadeh Abdollahnejad, Dimitrios Panagiotidis, Shaban Shataee Joybari, Peter Surový, Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data Forests. ,vol. 8, pp. 42- ,(2017) , 10.3390/F8020042
Roser Casas-Mulet, Elise King, Doris Hoogeveen, Long Duong, Garima Lakhanpal, Timothy Baldwin, Michael J. Stewardson, J. Angus Webb, Two decades of ecohydraulics: trends of an emerging interdiscipline Journal of Ecohydraulics. ,vol. 1, pp. 16- 30 ,(2016) , 10.1080/24705357.2016.1251296
William E. Kunin, Simon A. Corne, Jack J. Lennon, Stephen J. Carver, Willem W. S. van van Hees, Predicting forest attributes In southeast Alaska using artificial neural networks Forest Science. ,vol. 50, pp. 259- 276 ,(2004) , 10.1093/FORESTSCIENCE/50.2.259
Rafael Muñoz-Mas, Rui Manuel Soares Costa, Juan Diego Alcaraz-Hernández, Francisco Martínez-Capel, Microhabitat competition between Iberian fish species and the endangered Júcar nase (Parachondrostoma arrigonis; Steindachner, 1866) Journal of Ecohydraulics. ,vol. 2, pp. 3- 15 ,(2017) , 10.1080/24705357.2016.1276417
T. Kohonen, Self-organized formation of topographically correct feature maps Biological Cybernetics. ,vol. 43, pp. 59- 69 ,(1982)
N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique arXiv: Artificial Intelligence. ,(2011) , 10.1613/JAIR.953
Jeffrey S. Evans, Melanie A. Murphy, Zachary A. Holden, Samuel A. Cushman, Modeling species distribution and change using random forest [Chapter 8] In: Drew, A. C.; Wiersma, Y.; Huettmann, F., eds. Predictive Species and Habitat Modeling in Landscape Ecology. New York, NY: Springer. p.139-159.. pp. 139- 159 ,(2011) , 10.1007/978-1-4419-7390-0_8
Asa Ben-Hur, Jason Weston, None, A User's Guide to Support Vector Machines Methods of Molecular Biology. ,vol. 609, pp. 223- 239 ,(2010) , 10.1007/978-1-60327-241-4_13