Anomaly detection using network traffic data

作者: Grégory Mermoud , Jean-Philippe Vasseur , Laurent Sartran

DOI:

关键词:

摘要: In one embodiment, a device in network receives traffic metrics for plurality of applications the network. The populates feature space machine learning-based anomaly detector. identifies missing dataset particular applications. adjusts how is sent network, to capture dataset.

参考文章(13)
Jean-Philippe Vasseur, Andrea Di Pietro, Javier Cruz Mota, Hierarchical event detection in a computer network ,(2014)
Vach P. Kompella, Pranjal K. Dutta, Method and apparatus for rapid rerouting of ldp packets ,(2012)
Gregory Mermoud, Jean-Philippe Vasseur, Sukrit Dasgupta, Traffic-based inference of influence domains in a network by using learning machines ,(2014)
Abraham Ankumah, Daniel Kan, Richard Barry, Anand Srinivas, System and method for observing and controlling a programmable network using cross network learning ,(2014)
Cynthia Wagner, Jérôme François, Radu State, Thomas Engel, Machine learning approach for IP-flow record anomaly detection NETWORKING'11 Proceedings of the 10th international IFIP TC 6 conference on Networking - Volume Part I. pp. 28- 39 ,(2011) , 10.1007/978-3-642-20757-0_3
Sampo Torikka, Markus Miettinen, Albert Höglund, Jyrki Berg, Kari Kulmala, Kimmo Hätönen, System, device and method for automatic anomaly detection ,(2001)
Hongbo Jiang, Andrew W. Moore, Zihui Ge, Shudong Jin, Jia Wang, Lightweight application classification for network management Proceedings of the 2007 SIGCOMM workshop on Internet network management - INM '07. pp. 299- 304 ,(2007) , 10.1145/1321753.1321771