Finite element analysis of finite strain micromorphic Drucker-Prager plasticity

作者: Volkan Isbuga , Richard A. Regueiro

DOI: 10.1016/J.COMPSTRUC.2017.07.025

关键词:

摘要: Abstract Earlier, Isbuga and Regueiro (2011) presented three dimensional finite element analysis of strain micromorphic isotropic elasticity based on the approach Eringen Suhubi (1964). We present extension this work to plasticity, following formulation (2009, 2010) (2012). assume existence an intermediate configuration apply separate multiplicative decomposition deformation gradient tensor micro-deformation tensor. In paper, we investigate effect elastic length scale together with boundary layer micro-displacement field for uniaxial plane conditions, involving elastoplasticity a Drucker-Prager yield function. emphasize importance additional degrees freedom introduced by continuum formulation.

参考文章(37)
J.C. Simo, Numerical analysis and simulation of plasticity Handbook of Numerical Analysis. ,vol. 6, pp. 183- 499 ,(1998) , 10.1016/S1570-8659(98)80009-4
P. Grammenoudis, Ch. Tsakmakis, D. Hofer, Micromorphic continuum. Part II: Finite deformation plasticity coupled with damage International Journal of Non-linear Mechanics. ,vol. 44, pp. 957- 974 ,(2009) , 10.1016/J.IJNONLINMEC.2009.05.004
G. Xotta, S. Beizaee, K.J. Willam, Bifurcation investigations of coupled damage-plasticity models for concrete materials Computer Methods in Applied Mechanics and Engineering. ,vol. 298, pp. 428- 452 ,(2016) , 10.1016/J.CMA.2015.10.010
E. H. Lee, D. T. Liu, Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis Journal of Applied Physics. ,vol. 38, pp. 19- 27 ,(1967) , 10.1063/1.1708953
M Ortiz, JC Simo, M Ortiz, A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations Computer Methods in Applied Mechanics and Engineering. ,vol. 49, pp. 221- 245 ,(1985) , 10.1016/0045-7825(85)90061-1
A. Eringen, Compatibility conditions of the theory of micromorphic elastic solids Indiana University Mathematics Journal. ,vol. 19, pp. 473- 481 ,(1969) , 10.1512/IUMJ.1970.19.19044
John F. Peters, Some fundamental aspects of the continuumization problem in granular media Journal of Engineering Mathematics. ,vol. 52, pp. 231- 250 ,(2005) , 10.1007/1-4020-4183-7_13
C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains International Journal of Solids and Structures. ,vol. 47, pp. 1546- 1554 ,(2010) , 10.1016/J.IJSOLSTR.2010.02.017