Continuous-time systems that solve computational problems

作者: Pierre-Antoine Absil

DOI:

关键词:

摘要: The concept of using continuous-time dynamical systems (described by ordinary differential equations) in order to solve computational problems is discussed, with an emphasis on convergence analysis and design procedures. approach illustrated concrete examples related the computation eigenvalues eigenvectors matrices.

参考文章(47)
Asa Ben-Hur, Hava T. Siegelmann, Shmuel Fishman, A Theory of Complexity for Continuous Time Systems Journal of Complexity. ,vol. 18, pp. 51- 86 ,(2002) , 10.1006/JCOM.2001.0581
T. Nanda, Differential Equations and the QR Algorithm SIAM Journal on Numerical Analysis. ,vol. 22, pp. 310- 321 ,(1985) , 10.1137/0722019
Beresford N. Parlett, The symmetric eigenvalue problem ,(1980)
U. Helmke, J. Moore, Optimization and Dynamical Systems ,(1996)
Pierre-Antoine Absil, Robert Mahony, Ben Andrews, None, Convergence of the Iterates of Descent Methods for Analytic Cost Functions Siam Journal on Optimization. ,vol. 16, pp. 531- 547 ,(2005) , 10.1137/040605266
M. Chu, N. Del Buono, L. Lopez, T. Politi, On the Low-Rank Approximation of Data on the Unit Sphere SIAM Journal on Matrix Analysis and Applications. ,vol. 27, pp. 46- 60 ,(2005) , 10.1137/S0895479803433295
Anthony M. Bloch, Arieh Iserles, On the optimality of double-bracket flows International Journal of Mathematics and Mathematical Sciences. ,vol. 2004, pp. 3301- 3319 ,(2004) , 10.1155/S0161171204406462
Wei-Yong Yan, J. Lam, An approximate approach to H/sup 2/ optimal model reduction IEEE Transactions on Automatic Control. ,vol. 44, pp. 1341- 1358 ,(1999) , 10.1109/9.774107
Arieh Iserles, On the Discretization of Double-Bracket Flows Foundations of Computational Mathematics. ,vol. 2, pp. 305- 329 ,(2002) , 10.1007/S102080010024
John Guckenheimer, Philip Holmes, M. Slemrod, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields ,(1983)