Efficient, perfect polynomial random number generators

作者: S. Micali , C. P. Schnorr

DOI: 10.1007/BF00196909

关键词:

摘要: Let N be a positive integer and let P ? [x] polynomial that is nonlinear on the set of integers modulo N. If, by choosing x at random in an initial segment , P(x) (mod N) appears to uniformly distributed any polynomial-time observer, then it possible construct very efficient pseudorandom number generators pass statistical test. We analyse this generator from two points view. A complexity theoretic analysis relates perfectness security RSA-scheme. proves least-significant bits are statistically random.

参考文章(15)
Donald Ervin Knuth, The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information Addison-Wesley Longman Publishing Co., Inc.. ,(1978)
S. Micali, C. P. Schnorr, Efficient, Perfect Random Number Generators international cryptology conference. pp. 173- 198 ,(1988) , 10.1007/0-387-34799-2_14
M. Santha, U.V. Vazirani, Generating Quasi-Random Sequences From Slightly-Random Sources 25th Annual Symposium onFoundations of Computer Science, 1984.. pp. 434- 440 ,(1984) , 10.1109/SFCS.1984.715945
R. Solovay, V. Strassen, A Fast Monte-Carlo Test for Primality SIAM Journal on Computing. ,vol. 6, pp. 84- 85 ,(1977) , 10.1137/0206006
Harald Niederreiter, Statistical independence of nonlinear congruential pseudorandom numbers Monatshefte für Mathematik. ,vol. 106, pp. 149- 159 ,(1988) , 10.1007/BF01298835
Andrew C Yao, None, Theory and application of trapdoor functions foundations of computer science. pp. 80- 91 ,(1982) , 10.1109/SFCS.1982.95
W. Alexi, B. Chor, O. Goldreich, C.P. Schnorr, RSA/Rabin Bits are 1/2 + 1 / Poly (Log N) Secure 25th Annual Symposium onFoundations of Computer Science, 1984.. pp. 449- 457 ,(1984) , 10.1109/SFCS.1984.715947
L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo random number generator SIAM Journal on Computing. ,vol. 15, pp. 364- 383 ,(1986) , 10.1137/0215025
Andrew Chi-Chih Yao, Theory and Applications of Trapdoor Functions (Extended Abstract) foundations of computer science. pp. 80- 91 ,(1982)
Werner Alexi, Benny Chor, Oded Goldreich, Claus P. Schnorr, RSA and Rabin functions: certain parts are as hard as the whole SIAM Journal on Computing. ,vol. 17, pp. 194- 209 ,(1988) , 10.1137/0217013