A simulated annealing version of the EM algorithm for non-Gaussian deconvolution

作者: M. LAVIELLE , E. MOULINES

DOI: 10.1023/A:1018594320699

关键词:

摘要: The Expectation–Maximization (EM) algorithm is a very popular technique for maximum likelihood estimation in incomplete data models. When the expectation step cannot be performed closed form, stochastic approximation of EM (SAEM) can used. Under general conditions, authors have shown that attractive stationary points SAEM correspond to global and local maxima observed likelihood. In order avoid convergence towards maxima, simulated annealing version proposed. An illustrative application convolution model estimating coefficients filter given.

参考文章(13)
Pierre Priouret, Michel Métivier, Albert Benveniste, Adaptive Algorithms and Stochastic Approximations ,(1990)
Harry Kesten, Accelerated Stochastic Approximation Annals of Mathematical Statistics. ,vol. 29, pp. 41- 59 ,(1958) , 10.1214/AOMS/1177706705
Y Amit, U Grenander, Comparing sweep strategies for stochastic relaxation Journal of Multivariate Analysis. ,vol. 37, pp. 197- 222 ,(1991) , 10.1016/0047-259X(91)90080-L
C.L. Nikias, J.M. Mendel, Signal processing with higher-order spectra IEEE Signal Processing Magazine. ,vol. 10, pp. 10- 37 ,(1993) , 10.1109/79.221324
Olcay Arslan, Patrick D. L. Constable, John T. Kent, Domains of convergence for the EM algorithm: a cautionary tale in a location estimation problem Statistics and Computing. ,vol. 3, pp. 103- 108 ,(1993) , 10.1007/BF00147772
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
C. F. Jeff Wu, ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM Annals of Statistics. ,vol. 11, pp. 95- 103 ,(1983) , 10.1214/AOS/1176346060
Greg C. G. Wei, Martin A. Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms Journal of the American Statistical Association. ,vol. 85, pp. 699- 704 ,(1990) , 10.1080/01621459.1990.10474930
Marc Lavielle, 2-D Bayesian deconvolution Geophysics. ,vol. 56, pp. 2008- 2018 ,(1991) , 10.1190/1.1443013
Saul B. Gelfand, Sanjoy K. Mitter, Metropolis-type annealing algorithms for global optimization in R d Siam Journal on Control and Optimization. ,vol. 31, pp. 111- 131 ,(1993) , 10.1137/0331009