STUDY OF RECOGNITION T ECHNIQUE OF RADAR TARGET'S O NE-DIMENSIONAL I MAGES B ASED ON RADIAL BASIS FUNCTION N ETWORK*

作者: Bao Zheng , Huang Deshuang

DOI:

关键词:

摘要: This paper studies the problem applying Radial Basis Function Network(RBFN) which is trained by Recursive Least Square Algorithm(RLSA) to recognition of one di- mensional images radar targets. The equivalence between RBFN and estimate Parzen window probabilistic density proved. It pointed out that I/O functions in hidden units can be generalized general kernel function or poten- tial function, too. discusses effects shape parameter c~ forgotten factor ,~ RLSA on results three kinds such as Gaussian, triangle, double-exponential, at same time, also relationship A training time RBFN.

参考文章(10)
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Renals, Rohwer, Phoneme classification experiments using radial basis functions international joint conference on neural network. pp. 461- 467 ,(1989) , 10.1109/IJCNN.1989.118620
L.-W. Chan, F. Fallside, An adaptive training algorithm for back propagation networks Computer Speech & Language. ,vol. 2, pp. 205- 218 ,(1987) , 10.1016/0885-2308(87)90009-X
T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, D. L. Alkon, Accelerating the convergence of the back-propagation method Biological Cybernetics. ,vol. 59, pp. 257- 263 ,(1988) , 10.1007/BF00332914
Kollias, Anastassiou, Adaptive training of multilayer neural networks using a least squares estimation technique IEEE 1988 International Conference on Neural Networks. pp. 383- 390 ,(1988) , 10.1109/ICNN.1988.23870
G. Vrckovnik, C.R. Carter, S. Haykin, Radial basis function classification of impulse radar waveforms international joint conference on neural network. pp. 45- 50 ,(1990) , 10.1109/IJCNN.1990.137542
S. Kollias, D. Anastassiou, An adaptive least squares algorithm for the efficient training of artificial neural networks IEEE Transactions on Circuits and Systems. ,vol. 36, pp. 1092- 1101 ,(1989) , 10.1109/31.192419
R.S. Scalero, N. Tepedelenlioglu, A fast new algorithm for training feedforward neural networks IEEE Transactions on Signal Processing. ,vol. 40, pp. 202- 210 ,(1992) , 10.1109/78.157194
M.R. Azimi-Sadjadi, R.-J. Liou, Fast learning process of multilayer neural networks using recursive least squares method IEEE Transactions on Signal Processing. ,vol. 40, pp. 446- 450 ,(1992) , 10.1109/78.124956