A simple construction of the continuum parabolic Anderson model on $\mathbf{R}^2$

作者: Martin Hairer , Cyril Labbé

DOI: 10.1214/ECP.V20-4038

关键词:

摘要: We propose a simple construction of the solution to continuum parabolic Anderson model on $\mathbf{R}^2$ which does not rely any elaborate arguments and makes extensive use linearity equation. A logarithmic renormalisation is required counterbalance divergent product appearing in Furthermore, we time-dependent weights our spaces distributions order construct unbounded space $\mathbf{R}^2$.

参考文章(10)
Hajer Bahouri, Raphaël Danchin, Jean-Yves Chemin, Fourier Analysis and Nonlinear Partial Differential Equations ,(2011)
Leon Simon, Schauder estimates by scaling Calculus of Variations and Partial Differential Equations. ,vol. 5, pp. 391- 407 ,(1997) , 10.1007/S005260050072
Giuseppe Da Prato, Arnaud Debussche, Two-Dimensional Navier–Stokes Equations Driven by a Space–Time White Noise Journal of Functional Analysis. ,vol. 196, pp. 180- 210 ,(2002) , 10.1006/JFAN.2002.3919
René A. Carmona, S. A. Molchanov, Parabolic Anderson Problem and Intermittency ,(1994)
Ingrid Daubechies, Orthonormal bases of compactly supported wavelets Communications on Pure and Applied Mathematics. ,vol. 41, pp. 909- 996 ,(1988) , 10.1002/CPA.3160410705
Yaozhong Hu, Chaos expansion of heat equations with white noise potentials Potential Analysis. ,vol. 16, pp. 45- 66 ,(2002) , 10.1023/A:1024878703232
Martin Hairer, Andrey Piatnitski, Andrey Piatnitski, Etienne Pardoux, Random homogenisation of a highly oscillatory singular potential Stochastic Partial Differential Equations: Analysis and Computations. ,vol. 1, pp. 571- 605 ,(2013) , 10.1007/S40072-013-0018-Y
MASSIMILIANO GUBINELLI, PETER IMKELLER, NICOLAS PERKOWSKI, Paracontrolled distributions and singular PDEs Forum of Mathematics, Pi. ,vol. 3, ,(2015) , 10.1017/FMP.2015.2
Davar Khoshnevisan, Mathew Joseph, Daniel Conus, On the chaotic character of the stochastic heat equation, before the onset of intermitttency Annals of Probability. ,vol. 41, pp. 2225- 2260 ,(2013) , 10.1214/11-AOP717