Machine Learning-Based Imputation of Missing SNP Genotypes in SNP Genotype Arrays

作者: Aleksandar R. Mihajlovic

DOI: 10.1007/978-1-4614-8785-2_6

关键词:

摘要: The missing value problem in SNP genotype data sets is introduced along with a short overview of two commonly used imputation algorithms, fastPHASE and KNNimpute, to resolve the for such sets. A comparison algorithms provided additional preliminary biological mathematical background information better understanding mentioned.

参考文章(33)
Thomas Glen Dietterich, Adaptive computation and machine learning MIT Press. ,(1998)
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Lon R Cardon, John I Bell, None, Association study designs for complex diseases Nature Reviews Genetics. ,vol. 2, pp. 91- 99 ,(2001) , 10.1038/35052543
Karl W. Broman, Cleaning genotype data. Genetic Epidemiology. ,vol. 17, ,(1999) , 10.1002/GEPI.1370170714
Jay Yellen, Jonathan Gross, Graph Theory and Its Applications ,(1998)
Nitin Bhatia, Vandana, Survey of Nearest Neighbor Techniques arXiv: Computer Vision and Pattern Recognition. ,(2010)
François Pompanon, Aurélie Bonin, Eva Bellemain, Pierre Taberlet, Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics. ,vol. 6, pp. 847- 859 ,(2005) , 10.1038/NRG1707
Greg Gibson, Hints of hidden heritability in GWAS Nature Genetics. ,vol. 42, pp. 558- 560 ,(2010) , 10.1038/NG0710-558