Common solution to the Lyapunov equation for 2 × 2 complex matrices☆

作者: Thomas J. Laffey , Helena Šmigoc

DOI: 10.1016/J.LAA.2006.08.028

关键词:

摘要: Abstract In this work we solve the problem of a common solution to Lyapunov equation for 2 × 2 complex matrices. We show that necessary and sufficient conditions existence matrices A B is (  + i αI )( βI ) −1 have no negative real eigenvalues all α , β ∈ R . how these results relate special class 4 × 4

参考文章(16)
Daniel Liberzon, Switching in Systems and Control ,(2003)
Nir Cohen, Izchak Lewkowicz, Convex invertible cones of state space systems Mathematics of Control, Signals, and Systems. ,vol. 10, pp. 265- 286 ,(1997) , 10.1007/BF01211507
David Carlson, Raphael Loewy, On Ranges of Lyapunov Transformations. Linear Algebra and its Applications. ,vol. 8, pp. 237- 248 ,(1974) , 10.1016/0024-3795(74)90069-X
Raphael Loewy, On Ranges of Lyapunov Transformations. III Siam Journal on Applied Mathematics. ,vol. 30, pp. 687- 702 ,(1976) , 10.1137/0130061
Daniel Liberzon, A Stephen Morse, Basic problems in stability and design of switched systems IEEE Control Systems Magazine. ,vol. 19, pp. 59- 70 ,(1999) , 10.1109/37.793443
Nir Cohen, Izchak Lewkowicz, A pair of matrices sharing common Lyapunov solutions—A closer look Linear Algebra and its Applications. ,vol. 360, pp. 83- 104 ,(2003) , 10.1016/S0024-3795(02)00443-3
Thomas J. Laffey, Algebras generated by two idempotents Linear Algebra and its Applications. ,vol. 37, pp. 45- 53 ,(1981) , 10.1016/0024-3795(81)90166-X
Robert Shorten, Fiacre O Cairbre, A new methodology for the stability analysis of pairwise triangularizable and related switching systems Ima Journal of Applied Mathematics. ,vol. 67, pp. 441- 457 ,(2002) , 10.1093/IMAMAT/67.5.441
Nir Cohen, Izchak Lewkowicz, Convex invertible cones and the Lyapunov equation Linear Algebra and its Applications. ,vol. 250, pp. 105- 131 ,(1997) , 10.1016/0024-3795(95)00424-6