A Survey on the Differential and Symplectic Geometry of Linking Numbers

作者: Mauro Spera

DOI: 10.1007/S00032-006-0061-5

关键词:

摘要: The aim of the present survey mainly consists in illustrating some recently emerged differential and symplectic geometric aspects ordinary higher order linking numbers knot theory, within modern geometrical topological framework, constantly referring to their multifaceted physical origins interpretations.

参考文章(77)
M. Kontsevich, Vassiliev’s knot invariants ADVSOV. pp. 137- 150 ,(1993) , 10.1090/ADVSOV/016.2/04
N. W. Evans, M. A. Berger, A Hierarchy of Linking Integrals Springer, Dordrecht. pp. 237- 248 ,(1992) , 10.1007/978-94-017-3550-6_12
Vittorio Penna, Mauro Spera, Mario Rasetti, Quantum dynamics of 3-D vortices Contemporary mathematics. ,vol. 219, pp. 173- 193 ,(1998)
Aleksandr Aleksandrovich Kirillov, Lectures on the Orbit Method ,(2004)
Dariusz Chruściński, Andrzej Jamiołkowski, Geometric Phases in Classical and Quantum Mechanics ,(2013)
Renzo Ricca, Applications of knot theory in fluid mechanics Banach Center Publications. ,vol. 42, pp. 321- 346 ,(1998) , 10.4064/-42-1-321-346
Joseph Harris, Phillip A Griffiths, Principles of Algebraic Geometry ,(1978)
Aleksandr A. Kirillov, Elements of the theory of representations ,(1976)