Efficient Evolutionary Algorithms for Searching Robust Solutions

作者: Jürgen Branke

DOI: 10.1007/978-1-4471-0519-0_22

关键词:

摘要: For real world problems it is often not sufficient to find solutions of high quality, but the should also be robust. By robust we mean that certain deviations from solution tolerated without a total loss quality.

参考文章(15)
Robert B. Heckendorn, Soraya Rana, Darrell Whitley, The Island Model Genetic Algorithm: On Separability, Population Size and Convergence computer and information technology. ,vol. 7, pp. 33- 47 ,(2015)
Ulrich Hammel, Thomas Bäck, Evolution Strategies on Noisy Functions: How to Improve Convergence Properties parallel problem solving from nature. pp. 159- 168 ,(1994) , 10.1007/3-540-58484-6_260
Peter Stagge, Averaging efficiently in the presence of noise Lecture Notes in Computer Science. pp. 188- 197 ,(1998) , 10.1007/BFB0056862
S. Burt, M. Johnson, I. C. Parmee, Techniques to aid global search in engineering design industrial and engineering applications of artificial intelligence and expert systems. pp. 377- 385 ,(1994) , 10.5555/201081.201134
A. Thompson, Evolutionary techniques for fault tolerance UKACC International Conference on Control. Control '96. ,vol. 1, pp. 693- 698 ,(1996) , 10.1049/CP:19960635
J. Michael Fitzpatrick, John J. Grefenstette, Genetic Algorithms in Noisy Environments Machine Learning. ,vol. 3, pp. 101- 120 ,(1988) , 10.1007/BF00113893
U. Kohlmorgen, H. Schmeck, K. Haase, Experiences with fine‐grainedparallel genetic algorithms Annals of Operations Research. ,vol. 90, pp. 203- 219 ,(1999) , 10.1023/A:1018912715283
Akiko N Aizawa, Benjamin W Wah, None, Scheduling of genetic algorithms in a noisy environment Evolutionary Computation. ,vol. 2, pp. 97- 122 ,(1994) , 10.1162/EVCO.1994.2.2.97