Fundamental study: Complete and directed complete Ω-categories

作者: Hongliang Lai , Dexue Zhang

DOI: 10.1016/J.TCS.2007.09.012

关键词:

摘要: Let @W be a commutative, unital quantale. Complete and directed complete @W-categories are the core objects in Quantitative Domain Theory. This paper, based on theory of @F-completeness for enriched categories, presents systematic investigation completeness @W-categories.

参考文章(31)
Angus Macintyre, Trends in Logic Studies in logic and the foundations of mathematics. ,vol. 127, pp. 365- 367 ,(1989) , 10.1016/S0049-237X(08)70277-5
G. M. Kelly, Basic concepts of enriched category theory Cambridge University Press. ,(1982)
K. Keimel, K. H. Hofmann, J. D. Lawson, M. W. Mislove, D. S. Scott, G. Gierz, Continuous Lattices and Domains ,(2003)
Kimmo I. Rosenthal, Quantales and their applications Longman Scientific & Technical. ,(1990)
Vincent Schmitt, Flatness, preorders and general metric spaces (revised) arXiv: Category Theory. ,(2006)
M. B. Smyth, Quasi Uniformities: Reconciling Domains with Metric Spaces Proceedings of the 3rd Workshop on Mathematical Foundations of Programming Language Semantics. pp. 236- 253 ,(1987) , 10.1007/3-540-19020-1_12
F. William Lawvere, Taking categories seriously Revista Colombiana de Matemáticas. ,vol. 20, pp. 147- 178 ,(1986)
J.J.M.M. Rutten, Weighted colimits and formal balls in generalized metric spaces Topology and its Applications. ,vol. 89, pp. 179- 202 ,(1997) , 10.1016/S0166-8641(97)00224-1
M.P. Schellekens, A characterization of partial metrizability: domains are quantifiable Theoretical Computer Science. ,vol. 305, pp. 409- 432 ,(2003) , 10.1016/S0304-3975(02)00705-3