Orthogonal Array-Based Latin Hypercubes

作者: Boxin Tang

DOI: 10.1080/01621459.1993.10476423

关键词:

摘要: In this article, we use orthogonal arrays (OA's) to construct Latin hypercubes. Besides preserving the univariate stratification properties of Latin hypercubes, these strength r OA …

参考文章(19)
Ronald L. Iman, W. J. Conover, A distribution-free approach to inducing rank correlation among input variables Communications in Statistics - Simulation and Computation. ,vol. 11, pp. 311- 334 ,(1982) , 10.1080/03610918208812265
R. L. PLACKETT, J. P. BURMAN, THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS Biometrika. ,vol. 33, pp. 305- 325 ,(1946) , 10.1093/BIOMET/33.4.305
R. C. Bose, K. A. Bush, Orthogonal Arrays of Strength two and three Annals of Mathematical Statistics. ,vol. 23, pp. 508- 524 ,(1952) , 10.1214/AOMS/1177729331
Michael Stein, Large sample properties of simulations using latin hypercube sampling Technometrics. ,vol. 29, pp. 143- 151 ,(1987) , 10.2307/1269769
Christophery J. Nachtsheim, Orthogonal Fractional Factorial Designs ,(1985)
R. J. Beckman, M. D. McKay, W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code Technometrics. ,vol. 42, pp. 55- 61 ,(2000) , 10.2307/1271432
Jerome Sacks, Donald Ylvisaker, Some Model Robust Designs in Regression Annals of Statistics. ,vol. 12, pp. 1324- 1348 ,(1984) , 10.1214/AOS/1176346795
Philip J. Davis, Methods of Numerical Integration ,(1967)
William J Welch, Jerome Sacks, A system for quality improvement via computer experiments Communications in Statistics-theory and Methods. ,vol. 20, pp. 477- 495 ,(1991) , 10.1080/03610929108830510