Physiological Informatics: Collection and Analyses of Data from Wearable Sensors and Smartphone for Healthcare.

作者: Jinwei Bai , Li Shen , Huimin Sun , Bairong Shen

DOI: 10.1007/978-981-10-6041-0_2

关键词:

摘要: Physiological data from wearable sensors and smartphone are accumulating rapidly, this provides us the chance to collect dynamic personalized information as phenotype be integrated genotype for holistic understanding of complex diseases. This integration can applied early prediction prevention disease, therefore promoting shifting disease care tradition healthcare paradigm. In chapter, we summarize physiological signals which detected by sensors, sharing big data, mining methods discovery disease-associated patterns diagnosis treatment. We discuss challenges informatics about storage, standardization, analyses, applications smartphone. At last, present our perspectives on models disentangling relationship between data.

参考文章(82)
Franck Vidal, Boris Burle, Laure Spieser, Laurence Carbonnell, Cédric Meckler, Laurence Casini, Thierry Hasbroucq, Linking EEG signals, brain functions and mental operations: Advantages of the Laplacian transformation International Journal of Psychophysiology. ,vol. 97, pp. 221- 232 ,(2015) , 10.1016/J.IJPSYCHO.2015.04.022
Eric Elenko, Lindsay Underwood, Daphne Zohar, Defining digital medicine. Nature Biotechnology. ,vol. 33, pp. 456- 461 ,(2015) , 10.1038/NBT.3222
David C. Peritz, Austin Howard, Mario Ciocca, Eugene H. Chung, Smartphone ECG aids real time diagnosis of palpitations in the competitive college athlete Journal of Electrocardiology. ,vol. 48, pp. 896- 899 ,(2015) , 10.1016/J.JELECTROCARD.2015.07.010
G.B. Moody, R.G. Mark, A.L. Goldberger, PhysioNet: a research resource for studies of complex physiologic and biomedical signals Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163). ,vol. 27, pp. 179- 182 ,(2000) , 10.1109/CIC.2000.898485
Janice M Jenkins, Richard E Jenkins, Arrhythmia database for algorithm testing: surface leads plus intracardiac leads for validation Journal of Electrocardiology. ,vol. 36, pp. 157- 161 ,(2003) , 10.1016/J.JELECTROCARD.2003.09.041
Haemwaan Sivaraks, Chotirat Ann Ratanamahatana, Robust and accurate anomaly detection in ECG artifacts using time series motif discovery. Computational and Mathematical Methods in Medicine. ,vol. 2015, pp. 453214- 453214 ,(2015) , 10.1155/2015/453214
Thidarat Tinnakornsrisuphap, Richard E. Billo, An Interoperable System for Automated Diagnosis of Cardiac Abnormalities from Electrocardiogram Data IEEE Journal of Biomedical and Health Informatics. ,vol. 19, pp. 493- 500 ,(2015) , 10.1109/JBHI.2014.2321515
Ioanna Chouvarda, Nada Y. Philip, Pantelis Natsiavas, Vasilis Kilintzis, Drishty Sobnath, Reem Kayyali, Jorge Henriques, Rui Pedro Paiva, Andreas Raptopoulos, Olivier Chetelat, Nicos Maglaveras, WELCOME — Innovative integrated care platform using wearable sensing and smart cloud computing for COPD patients with Comorbidities international conference of the ieee engineering in medicine and biology society. ,vol. 2014, pp. 3180- 3183 ,(2014) , 10.1109/EMBC.2014.6944298
Tetsuya Takahashi, Raymond Y. Cho, Tomoyuki Mizuno, Mitsuru Kikuchi, Tetsuhito Murata, Koichi Takahashi, Yuji Wada, Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. NeuroImage. ,vol. 51, pp. 173- 182 ,(2010) , 10.1016/J.NEUROIMAGE.2010.02.009