Bearing fault detection of gear-box drive train using active filters

作者: K. G. Robbersmyr , H. V. Khang , J. S. L Senanayaka , R. Puche-Panadero

DOI:

关键词:

摘要: Failures on a rolling bearing in the gearbox drive system can be detected via vibration sensors or accelerometers. Measured signals include rotating harmonics, noises, associated with fault. Characteristic frequencies of faulty are very close to higher harmonics rotor frequency. This causes big challenge know if is healthy condition by using spectral analysis. An effective extraction fault-related from measured useful analyze characteristic frequencies. It found that active filters fast extract time-domain. The diagnostic analysis quickly implemented extracted Fast Fourier Transform frequency domain energy calculation time domain.

参考文章(16)
H. V. Khang, H. R. Karimi, K. G. Robbersmyr, Bearing fault diagnosis for inverter-fed motors via resonant filters international conference on mechatronics and control. pp. 939- 943 ,(2014) , 10.1109/ICMC.2014.7231692
Surya Teja Kandukuri, Andreas Klausen, Hamid Reza Karimi, Kjell Gunnar Robbersmyr, A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management Renewable & Sustainable Energy Reviews. ,vol. 53, pp. 697- 708 ,(2016) , 10.1016/J.RSER.2015.08.061
Johann F. Petit, Guillermo Robles, Hortensia Amaris, Current Reference Control for Shunt Active Power Filters Under Nonsinusoidal Voltage Conditions IEEE Transactions on Power Delivery. ,vol. 22, pp. 2254- 2261 ,(2007) , 10.1109/TPWRD.2007.905811
Irving P. Girsang, Jaspreet S. Dhupia, Eduard Muljadi, Mohit Singh, L. Y. Pao, Gearbox and drivetrain models to study dynamic effects of modern wind turbines energy conversion congress and exposition. pp. 874- 881 ,(2013) , 10.1109/ECCE.2013.6646795
E.P. de Moura, C.R. Souto, A.A. Silva, M.A.S. Irmão, Evaluation of principal component analysis and neural network performance for bearing fault diagnosis from vibration signal processed by RS and DF analyses Mechanical Systems and Signal Processing. ,vol. 25, pp. 1765- 1772 ,(2011) , 10.1016/J.YMSSP.2010.11.021
Wei Li, Zhencai Zhu, Fan Jiang, Gongbo Zhou, Guoan Chen, Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method Mechanical Systems and Signal Processing. ,vol. 50, pp. 414- 426 ,(2015) , 10.1016/J.YMSSP.2014.05.034
M.J. Devaney, L. Eren, Detecting motor bearing faults IEEE Instrumentation & Measurement Magazine. ,vol. 7, pp. 30- 50 ,(2004) , 10.1109/MIM.2004.1383462
F. Immovilli, M. Cocconcelli, A. Bellini, R. Rubini, Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals IEEE Transactions on Industrial Electronics. ,vol. 56, pp. 4710- 4717 ,(2009) , 10.1109/TIE.2009.2025288
L. Eren, M.J. Devaney, Bearing damage detection via wavelet packet decomposition of the stator current IEEE Transactions on Instrumentation and Measurement. ,vol. 53, pp. 431- 436 ,(2004) , 10.1109/TIM.2004.823323
Vicente Climente-Alarcon, Jose Alfonso Antonino-Daviu, Elias G. Strangas, Martin Riera-Guasp, Rotor-Bar Breakage Mechanism and Prognosis in an Induction Motor IEEE Transactions on Industrial Electronics. ,vol. 62, pp. 1814- 1825 ,(2015) , 10.1109/TIE.2014.2336604