Global Solar Radiation Estimation and Climatic Variability Analysis Using Extreme Learning Machine Based Predictive Model

作者: Tao Hai , Ahmad Sharafati , Achite Mohammed , Sinan Q Salih , Ravinesh C Deo

DOI: 10.1109/ACCESS.2020.2965303

关键词:

摘要: Sustainable utilization of the freely available solar radiation as renewable energy source requires accurate predictive models to quantitatively evaluate future potentials. In this research, an evaluation preciseness extreme learning machine (ELM) model a fast and efficient framework for estimating global incident (G) is undertaken. Daily meteorological datasets suitable G estimation belongs northern parts Cheliff Basin in Northwest Algeria, used construct model. Cross-correlation functions are applied between inputs target variable (i.e., G) where several climatological information’s predictors surface level estimation. The most significant determined accordance with highest cross-correlations considering covariance dataset. Subsequently, seven ELM unique neuronal architectures terms their input-hidden-output neurons developed appropriate input combinations. prescribed model’s performance over testing phase evaluated against multiple linear regressions (MLR), autoregressive integrated moving average (ARIMA) well-established literature studies. This done statistical score metrics. quantitative terms, root mean square error (RMSE) absolute (MAE) dramatically lower optimal RMSE MAE = 3.28 2.32 Wm−2 compared 4.24 3.24 (MLR) 8.33 5.37 (ARIMA).

参考文章(42)
Yingni Jiang, Estimation of monthly mean daily diffuse radiation in China Applied Energy. ,vol. 86, pp. 1458- 1464 ,(2009) , 10.1016/J.APENERGY.2009.01.002
Norman Richard Draper, Harry Smith, Applied Regression Analysis ,(1966)
S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, M. Sánchez-Girón, Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach Solar Energy. ,vol. 105, pp. 91- 98 ,(2014) , 10.1016/J.SOLENER.2014.04.009
R.B. Benson, M.V. Paris, J.E. Sherry, C.G. Justus, Estimation of daily and monthly direct, diffuse and global solar radiation from sunshine duration measurements Solar Energy. ,vol. 32, pp. 523- 535 ,(1984) , 10.1016/0038-092X(84)90267-6
A. Voskrebenzev, S. Riechelmann, A. Bais, H. Slaper, G. Seckmeyer, Estimating probability distributions of solar irradiance Theoretical and Applied Climatology. ,vol. 119, pp. 465- 479 ,(2015) , 10.1007/S00704-014-1189-9
Dylan Keon, Brucel McCune, Equations for potential annual direct incident radiation and heat load Journal of Vegetation Science. ,vol. 13, pp. 603- 606 ,(2002) , 10.1658/1100-9233(2002)013[0603:EFPADI]2.0.CO;2
Nan-Ying Liang, Guang-Bin Huang, P. Saratchandran, N. Sundararajan, A Fast and Accurate Online Sequential Learning Algorithm for Feedforward Networks IEEE Transactions on Neural Networks. ,vol. 17, pp. 1411- 1423 ,(2006) , 10.1109/TNN.2006.880583
D W Medugu, D Yakubu, Estimation of mean monthly global solar radiation in Yola - Nigeria using angstrom model Advances in Applied Science Research. ,vol. 2, ,(2011)
Kasra Mohammadi, Shahaboddin Shamshirband, Dalibor Petković, Hossein Khorasanizadeh, Determining the most important variables for diffuse solar radiation prediction using adaptive neuro-fuzzy methodology; case study: City of Kerman, Iran Renewable & Sustainable Energy Reviews. ,vol. 53, pp. 1570- 1579 ,(2016) , 10.1016/J.RSER.2015.09.028