Maximal entanglement from quantum random walks

作者: B Allés , S. Gündüç , Yigit Gündüç

DOI: 10.1007/S11128-011-0240-3

关键词:

摘要: The conditions under which entanglement becomes maximal are sought in the general one-dimensional quantum random walk with two walkers. Moreover, a shift operator for walkers is introduced and its performance generating analyzed as function of several free parameters, some them coming from itself others coin operator. To simplify investigation an averaged defined.

参考文章(31)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
Norio Konno, Quantum Random Walks in One Dimension Quantum Information Processing. ,vol. 1, pp. 345- 354 ,(2002) , 10.1023/A:1023413713008
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Salvador E. Venegas-Andraca, Sougato Bose, Quantum Walk-based Generation of Entanglement Between Two Walkers arXiv: Quantum Physics. ,(2009)
Nayak Ashwin, Vishwanath Ashvin, Quantum Walk on the Line arXiv: Quantum Physics. ,(2000)
John Watrous, Quantum simulations of classical random walks and undirected graph connectivity conference on computational complexity. ,vol. 62, pp. 180- 187 ,(1999) , 10.1006/JCSS.2000.1732
Y. Aharonov, L. Davidovich, N. Zagury, Quantum random walks Physical Review A. ,vol. 48, pp. 1687- 1690 ,(1993) , 10.1103/PHYSREVA.48.1687
Klaus Mayer, Malte C. Tichy, Florian Mintert, Thomas Konrad, Andreas Buchleitner, Counting statistics of many-particle quantum walks Physical Review A. ,vol. 83, pp. 062307- ,(2011) , 10.1103/PHYSREVA.83.062307
Edward Farhi, Sam Gutmann, Quantum computation and decision trees Physical Review A. ,vol. 58, pp. 915- 928 ,(1998) , 10.1103/PHYSREVA.58.915
David A Meyer, On the absence of homogeneous scalar unitary cellular automata Physics Letters A. ,vol. 223, pp. 337- 340 ,(1996) , 10.1016/S0375-9601(96)00745-1