A Strong Approximation Theorem for Stochastic Recursive Algorithms

作者: V. S. Borkar , S. K. Mitter

DOI: 10.1023/A:1022630321574

关键词:

摘要: The constant stepsize analog of Gelfand-Mitter type discrete-time stochastic recursive algorithms is shown to track an associated differential equation in the strong sense, i.e., with respect appropriate divergence measure.

参考文章(16)
I. Gy�ngy, Mimicking the one-dimensional marginal distributions of processes having an ito differential Probability Theory and Related Fields. ,vol. 71, pp. 501- 516 ,(1986) , 10.1007/BF00699039
A. N Shiryayev, R. S Liptser, Statistics of Random Processes I: General Theory ,(1984)
Vivek S. Borkar, Mrinal K. Ghosh, Ergodic control of multidimensional diffusions, II: Adaptive control Applied Mathematics and Optimization. ,vol. 21, pp. 191- 220 ,(1990) , 10.1007/BF01445163
Richard L. Tweedie, Sean Meyn, Markov Chains and Stochastic Stability ,(1993)
D. G. Aronson, Bounds for the fundamental solution of a parabolic equation Bulletin of the American Mathematical Society. ,vol. 73, pp. 890- 896 ,(1967) , 10.1090/S0002-9904-1967-11830-5
Morris W. Hirsch, Convergent activation dynamics in continuous time networks Neural Networks. ,vol. 2, pp. 331- 349 ,(1989) , 10.1016/0893-6080(89)90018-X
O. Ladyženskaja, V. Solonnikov, N. Ural′ceva, Linear and Quasi-linear Equations of Parabolic Type Translations of Mathematical#N# Monographs. ,vol. 23, ,(1968) , 10.1090/MMONO/023
Vivek S. Borkar, A remark on the attainable distributions of controlled diffusions Stochastics An International Journal of Probability and Stochastic Processes. ,vol. 18, pp. 17- 23 ,(1986) , 10.1080/17442508608833398
Thomas M. Cover, Joy A. Thomas, Elements of information theory ,(1991)