Engineering the pentose phosphate pathway of Saccharomyces cerevisiae for production of ethanol and xylitol

作者: Mervi Toivari

DOI:

关键词:

摘要: The baker’s yeast Saccharomyces cerevisiae has a long tradition in alcohol production from D-glucose of e.g. starch. However, without genetic modifications it is unable to utilise the 5-carbon sugars D-xylose and L-arabinose present plant biomass. In this study, one key metabolic step catabolic pathway recombinant D-xylose-utilising S. strains was studied. This step, carried out by xylulokinase (XK), shown be rate-limiting, because overexpression xylulokinase-encoding gene XKS1 increased both specific ethanol rate yield D-xylose. addition, less unwanted side product xylitol produced. Recombinant D-xylose-utilizing have been constructed expressing genes coding for first two enzymes pathway, reductase (XR) dehydrogenase (XDH) Pichia stipitis. ability endogenous enable utilisation evaluated. Overexpression GRE3 an unspecific aldose ScXYL2 homologue enabled growth on aerobic conditions. strain with had lower accumulated more compared corresponding P. Use strictly NADPH-dependent Gre3p instead stipitis XR able NADH NADPH leads severe redox imbalance. not engineered presence activity expression SOR1 or SOR2 sorbitol dehydrogenase. Thus, activities encoded possibly SOR2, feasible, but requires efficient balance engineering.

参考文章(236)
B. Kamm, M. Kamm, Biorefineries – Multi Product Processes Advances in Biochemical Engineering \/ Biotechnology. ,vol. 105, pp. 175- 204 ,(2007) , 10.1007/10_2006_040
P. de Wulf, E.J. Vandamme, Microbial synthesis of D-ribose : metabolic deregulation and fermentation process Advances in Applied Microbiology. ,vol. 44, pp. 167- 214 ,(1997) , 10.1016/S0065-2164(08)70462-3
Marko Kuyper, Harry R Harhangi, Ann Kristin Stave, Aaron A Winkler, Mike SM Jetten, Wim TAM de Laat, Jan JJ den Ridder, Huub JM Op den Camp, Johannes P van Dijken, Jack T Pronk, High‐level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? Fems Yeast Research. ,vol. 4, pp. 69- 78 ,(2003) , 10.1016/S1567-1356(03)00141-7
D A Fell, S Thomas, PHYSIOLOGICAL CONTROL OF METABOLIC FLUX : THE REQUIREMENT FOR MULTISITE MODULATION Biochemical Journal. ,vol. 311, pp. 35- 39 ,(1995) , 10.1042/BJ3110035
Hannu Maaheimo, Jocelyne Fiaux, Z. Petek Çakar, James E. Bailey, Uwe Sauer, Thomas Szyperski, Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13 C labeling of common amino acids European Journal of Biochemistry. ,vol. 268, pp. 2464- 2479 ,(2001) , 10.1046/J.1432-1327.2001.02126.X
Marko Kuyper, Aaron A Winkler, Johannes P van Dijken, Jack T Pronk, Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle Fems Yeast Research. ,vol. 4, pp. 655- 664 ,(2004) , 10.1016/J.FEMSYR.2004.01.003
Betty L. Josephson, D. G. Fraenkel, Transketolase Mutants of Escherichia coli Journal of Bacteriology. ,vol. 100, pp. 1289- 1295 ,(1969) , 10.1128/JB.100.3.1289-1295.1969
Lídia Maria Pepe de Moraes, Sonia Maria de Freitas, Fernando Araripe Gonçalves Torres, Luanne Helena Augusto Lima, Cristiano Guimarães do Amaral Pinheiro, Xylitol dehydrogenase from Candida tropicalis: molecular cloning of the gene and structural analysis of the protein Applied Microbiology and Biotechnology. ,vol. 73, pp. 631- 639 ,(2006) , 10.1007/S00253-006-0525-0