Transient Semi Circular Lid Driven Cavity Flow Using Non Uniform Structured Grid Method with Upwind Scheme

作者: M.S. Idris , N.M.M. Ammar , T.M.Y.S. Tuan Ya , A. M. Amin

DOI: 10.15282/JMES.5.2013.18.0069

关键词:

摘要: In this article, two-dimensional lid-driven cavity flow in a semi-circular is simulated using non-uniform finite different method with structured grid. NavierStokes and continuity equations are simplified non-dimensional streamfunction– vorticity approach. A Reynolds number of 1000 used and the and streamfunction contour plot monitored convergence criteria 1x10-7 set to both streamfunction value. The result shows that primary vortex moves from upper left corner right corner, while magnitude grows at center. size decreases steadily as time increases. This phenomenon greatly affected by increasing size secondary lower left. Slight changes size are observed achieves steady state condition. Validation simulation results current value deviation established less than 5%. future, it recommended use better numerical so more stable calculation can be reduced.

参考文章(18)
M.S. Idris, C.S.N. Azwadi, Finite different and lattice Boltzmann modelling for simulation of natural convection in a square cavity International Journal of Mechanical and Materials Engineering. ,vol. 5, pp. 80- 86 ,(2010)
M.S. Idris, M.A.M. Irwan, N.M.M. Ammar, Steady State Vortex Structure of Lid Driven Flow InsideShallow Semi Ellipse Cavity Journal of Mechanical Engineering and Sciences. ,vol. 2, pp. 206- 216 ,(2012) , 10.15282/JMES.2.2012.8.0019
Fan Yang, Xuming Shi, Xueyan Guo, Qingyi Sai, MRT Lattice Boltzmann Schemes for High Reynolds Number Flow in Two-Dimensional Lid-Driven Semi-Circular Cavity Energy Procedia. ,vol. 16, pp. 639- 644 ,(2012) , 10.1016/J.EGYPRO.2012.01.103
Ting Zhang, Baochang Shi, Zhenhua Chai, Lattice Boltzmann simulation of lid-driven flow in trapezoidal cavities Computers & Fluids. ,vol. 39, pp. 1977- 1989 ,(2010) , 10.1016/J.COMPFLUID.2010.06.027
U Ghia, K.N Ghia, C.T Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method Journal of Computational Physics. ,vol. 48, pp. 387- 411 ,(1982) , 10.1016/0021-9991(82)90058-4
A. E. P. Veldman, K. Rinzema, Playing with nonuniform grids Journal of Engineering Mathematics. ,vol. 26, pp. 119- 130 ,(1992) , 10.1007/BF00043231
S. Albensoeder, H.C. Kuhlmann, H.J. Rath, Multiplicity of Steady Two-Dimensional Flows in Two-Sided Lid-Driven Cavities Theoretical and Computational Fluid Dynamics. ,vol. 14, pp. 223- 241 ,(2001) , 10.1007/S001620050138
M. Cheng, K.C. Hung, Vortex structure of steady flow in a rectangular cavity Computers & Fluids. ,vol. 35, pp. 1046- 1062 ,(2006) , 10.1016/J.COMPFLUID.2005.08.006
P. Kosinski, A. Kosinska, A.C. Hoffmann, Simulation of solid particles behaviour in a driven cavity flow Powder Technology. ,vol. 191, pp. 327- 339 ,(2009) , 10.1016/J.POWTEC.2008.10.025