Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease.

作者: Bo He , Sheng Luo

DOI: 10.1177/0962280213480877

关键词:

摘要: In many clinical trials, studying neurodegenerative diseases including Parkinson’s disease (PD), multiple longitudinal outcomes are collected in order to fully explore the multidimensional impairment caused by these diseases. The follow-up of some patients can be stopped outcome-dependent terminal event, e.g. death and dropout. this article, we develop a joint model that consists multilevel item response theory (MLIRT) for outcomes, Cox’s proportional hazard with piecewise constant baseline hazards event time data. Shared random effects used link together two models. inference is conducted using Bayesian framework via Markov Chain Monte Carlo simulation implemented BUGS language. Our proposed evaluated studies applied DATATOP study, motivating trial assessing effect tocopherol on PD among early PD.

参考文章(38)
Ira Shoulson, , DATATOP: A decade of neuroprotective inquiry Annals of Neurology. ,vol. 44, ,(1998) , 10.1002/ANA.410440724
Tom Y. M. Chiu, Tom Leonard, Kam-Wah Tsui, The Matrix-Logarithmic Covariance Model Journal of the American Statistical Association. ,vol. 91, pp. 198- 210 ,(1996) , 10.1080/01621459.1996.10476677
M. Pourahmadi, M. J. Daniels, Dynamic conditionally linear mixed models for longitudinal data. Biometrics. ,vol. 58, pp. 225- 231 ,(2002) , 10.1111/J.0006-341X.2002.00225.X
Dalton F. Andrade, Heliton R. Tavares, Item response theory for longitudinal data: population parameter estimation Journal of Multivariate Analysis. ,vol. 95, pp. 1- 22 ,(2005) , 10.1016/J.JMVA.2004.07.005
G. Touloumi, A. G. Babiker, S. J. Pocock, J. H. Darbyshire, Impact of missing data due to drop‐outs on estimators for rates of change in longitudinal studies: a simulation study Statistics in Medicine. ,vol. 20, pp. 3715- 3728 ,(2001) , 10.1002/SIM.1114
Liam M. O'Brien, Garrett M. Fitzmaurice, Analysis of longitudinal multiple‐source binary data using generalized estimating equations Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 53, pp. 177- 193 ,(2004) , 10.1046/J.0035-9254.2003.05296.X