Local vs. non-local interactions in population dynamics

作者: J. Furter , M. Grinfeld

DOI: 10.1007/BF00276081

关键词:

摘要: In this work we examine two models of single-species dynamics which incorporate non-local effects. The emphasis is on the ability these to generate stable patterns. Global behavior bifurcating branches also investigated.

参考文章(13)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
Jack K. Hale, K. Sakamoto, Shadow Systems and Attractors in Reaction-Diffusion Equations, Applicable Analysis. ,vol. 32, pp. 287- 303 ,(1987) , 10.1080/00036818908839855
Richard G Casten, Charles J Holland, Instability results for reaction diffusion equations with Neumann boundary conditions Journal of Differential Equations. ,vol. 27, pp. 266- 273 ,(1978) , 10.1016/0022-0396(78)90033-5
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
Y. Nishiura, Global Structure of Bifurcating Solutions of Some Reaction-Diffusion Systems SIAM Journal on Mathematical Analysis. ,vol. 13, pp. 555- 593 ,(1982) , 10.1137/0513037
Hiroshi Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations Publications of the Research Institute for Mathematical Sciences. ,vol. 15, pp. 401- 454 ,(1979) , 10.2977/PRIMS/1195188180
A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetika. ,vol. 12, pp. 30- 39 ,(1972) , 10.1007/BF00289234
Donald S. Cohen, James D. Murray, A generalized diffusion model for growth and dispersal in a population Journal of Mathematical Biology. ,vol. 12, pp. 237- 249 ,(1981) , 10.1007/BF00276132