On a Non-periodic Shrinking Generator

作者: Inese Berzina , Raivis Bets , Janis Buls , Edmunds Cers , Liga Kulesa

DOI: 10.1109/SYNASC.2011.25

关键词:

摘要: We present a new non-periodic random number generator based on the shrinking generator. The A-sequence is still generated using LFSR, but S-sequence replaced by finitely bi-ideal - sequence. resulting pseudo-random sequence performs well in statistical tests. show method for construction of an infinite bi-ideals from given A-sequence, such that nonperiodic. Further we prove existence what call universal produce words when used as all non-trivial periodic A-sequences.

参考文章(9)
Don Coppersmith Hugo Krawczyk, Yishay Mansour, None, The shrinking generator international cryptology conference. pp. 22- 39 ,(1994) , 10.1007/3-540-48329-2_3
Narendra K. Pareek, Vinod Patidar, Krishan K. Sud, A Pseudo Random Bit Generator Based on Chaotic Logistic Map and its Statistical Testing Informatica (lithuanian Academy of Sciences). ,vol. 33, pp. 441- 452 ,(2009)
Pierre L’Ecuyer, Random Number Generation Research Papers in Economics. pp. 35- 71 ,(2012) , 10.1007/978-3-642-21551-3_3
Yue Hu, Xiaofeng Liao, Kwok-wo Wong, Qing Zhou, A true random number generator based on mouse movement and chaotic cryptography Chaos Solitons & Fractals. ,vol. 40, pp. 2286- 2293 ,(2009) , 10.1016/J.CHAOS.2007.10.022
Jānis Buls, Aivars Lorencs, From bi-ideals to periodicity Theoretical Informatics and Applications. ,vol. 42, pp. 467- 475 ,(2008) , 10.1051/ITA:2008010
S. C. Phatak, S. Suresh Rao, Logistic map: A possible random-number generator Physical Review E. ,vol. 51, pp. 3670- 3678 ,(1995) , 10.1103/PHYSREVE.51.3670
Shin'ichi Oishi, Hajime Inoue, PSEUDO-RANDOM NUMBER GENERATORS AND CHAOS. Transactions of the Institute of Electronics and Communication Engineers of Japan. Section E. pp. 534- 541 ,(1982)