Lévy description of anomalous diffusion in dynamical systems

作者: J. Klafter , G. Zumofen , M. F. Shlesinger

DOI: 10.1007/3-540-59222-9_35

关键词:

摘要: Anomalous diffusion properties, both enhanced and dispersive, are common to a broad spectrum of systems including dynamical systems. We review an approach based on Levy scale-invariant distributions describe transport in such introduce the basic ingredients that make useful describing anomalous behavior demonstrate applicability cases standard map, “egg-crate” potential novel one-dimensional iterated map which leads combined laminar-dispersive motion.

参考文章(31)
Charles F.F. Karney, Long-time correlations in the stochastic regime Physica D: Nonlinear Phenomena. ,vol. 8, pp. 360- 380 ,(1983) , 10.1016/0167-2789(83)90232-4
James D. Hanson, John R. Cary, James D. Meiss, Algebraic Decay in Self-Similar Markov Chains Journal of Statistical Physics. ,vol. 39, pp. 327- 345 ,(1985) , 10.1007/BF01018666
A.A. Chernikov, B.A. Petrovichev, A.V. Rogal'sky, R.Z. Sagdeev, G.M. Zaslavsky, Anomalous transport of streamlines due to their chaos and their spatial topology Physics Letters A. ,vol. 144, pp. 127- 133 ,(1990) , 10.1016/0375-9601(90)90687-J
D. K. Chaĭkovsky, G. M. Zaslavsky, Channeling and percolation in two‐dimensional chaotic dynamics Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 1, pp. 463- 472 ,(1991) , 10.1063/1.165856
Michael F. Shlesinger, Joseph Klafter, Y. M. Wong, Random Walks with Infinite Spatial and Temporal Moments Journal of Statistical Physics. ,vol. 27, pp. 499- 512 ,(1982) , 10.1007/BF01011089
D'Arcy Wentworth Thompson, On Growth and Form ,(1917)
Boris V Chirikov, A universal instability of many-dimensional oscillator systems Physics Reports. ,vol. 52, pp. 263- 379 ,(1979) , 10.1016/0370-1573(79)90023-1
A. Blumen, J. Klafter, G. Zumofen, Models for Reaction Dynamics in Glasses Physics and Chemistry of Materials with Low-Dimensional Structures. ,vol. 1, pp. 199- 265 ,(1986) , 10.1007/978-94-009-4650-7_5
F. Hayot, Levy walk in lattice-gas hydrodynamics Physical Review A. ,vol. 43, pp. 806- 810 ,(1991) , 10.1103/PHYSREVA.43.806