Solution of the Schrödinger equation by a spectral method II: Vibrational energy levels of triatomic molecules

作者: M. D. Feit , J. A. Fleck

DOI: 10.1063/1.444501

关键词:

摘要: The spectral method utilizes numerical solutions to the time‐dependent Schrodinger equation generate energy eigenvalues and eigenfunctions of time‐independent equation. Accurate wave functions ψ(r, t) are generated by split operator FFT method, correlation function 〈ψ(r, 0) ‖ ψ(r, t)〉 is computed integration. Fourier analysis this reveals a set resonant peaks that correspond stationary states system. Analysis location these with high accuracy. Additional transforms respect time eigenfunctions. Previous applications were two‐dimensional potentials. In paper obtained presented for vibrational three‐dimensional Born–Oppenheimer potentials applicable SO2, O3, H2O. compared results variational method. It concluded an accurate tool treating variety practical

参考文章(15)
G. D. Carney, C. W. Kern, Vibration-rotation analysis of some nonlinear molecules by a variational method International Journal of Quantum Chemistry. ,vol. 9, pp. 317- 323 ,(2009) , 10.1002/QUA.560090840
G.D Carney, L.A Curtiss, S.R Langhoff, Improved potential functions for bent AB2 molecules: Water and ozone Journal of Molecular Spectroscopy. ,vol. 61, pp. 371- 381 ,(1976) , 10.1016/0022-2852(76)90328-3
J. A. Fleck, J. R. Morris, M. D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere Applied physics. ,vol. 10, pp. 129- 160 ,(1976) , 10.1007/BF00896333
E. Bright Wilson, J. B. Howard, The Vibration‐Rotation Energy Levels of Polyatomic Molecules I. Mathematical Theory of Semirigid Asymmetrical Top Molecules The Journal of Chemical Physics. ,vol. 4, pp. 260- 268 ,(1936) , 10.1063/1.1749833
R.J. Whitehead, N.C. Handy, Variational calculation of vibration-rotation energy levels for triatomic molecules Journal of Molecular Spectroscopy. ,vol. 55, pp. 356- 373 ,(1975) , 10.1016/0022-2852(75)90274-X
Donald G Truhlar, Finite difference boundary value method for solving one-dimensional eigenvalue equations Journal of Computational Physics. ,vol. 10, pp. 123- 132 ,(1972) , 10.1016/0021-9991(72)90094-0
S.M. Colwell, N.C. Handy, Vibrational energies for triatomic molecules using a semi-classical trajectory method Molecular Physics. ,vol. 35, pp. 1183- 1190 ,(1978) , 10.1080/00268977800100861
Michael J. Davis, Eric J. Heller, Multidimensional wave functions from classical trajectories Journal of Chemical Physics. ,vol. 75, pp. 3916- 3924 ,(1981) , 10.1063/1.442548
Alan D. Isaacson, Donald G. Truhlar, Kerin Scanlon, John Overend, Tests of approximation schemes for vibrational energy levels and partition functions for triatomics: H2O and SO2 Journal of Chemical Physics. ,vol. 75, pp. 3017- 3024 ,(1981) , 10.1063/1.442394
A. Barbe, C. Secroun, P. Jouve, Infrared spectra of 16O3 and 18O3: Darling and Dennison resonance and anharmonic potential function of ozone Journal of Molecular Spectroscopy. ,vol. 49, pp. 171- 182 ,(1974) , 10.1016/0022-2852(74)90267-7