PROBABILISTIC-GEOMETRIC THEOREMS ARISING FROM THE ANALYSIS OF CONTINGENCY TABLES

作者: Persi Diaconis , Bradley Efron

DOI: 10.1016/B978-0-12-279450-6.50014-2

关键词:

摘要: Publisher Summary This chapter presents a geometric explanation for the similarity of two classical formulas in probability: Stevens's formula chance that n random arcs cover circle and Laplace's density sum uniform variables. Probabilistic-geometric proofs de Finettiss distribution function point on n-simplex, an extension Bayesss result—a mixture multinomials has Bose-Einstein distribution, result Stanley explaining why permutation k or fewer rising sequences can be expressed terms formula. The generalized variance vector is defined to product nonzero eigenvalues its covariance matrix. Simple are derived multinomial Dirichlet distributions, Fisher-Yates distribution. latter multivariate version hypergeometric

参考文章(17)
Harold Hotelling, The Behavior of Some Standard Statistical Tests under Nonstandard Conditions Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. pp. 319- 359 ,(1961)
I.J. Good, C44. Bayes's billiard-table argument extended to multinomials Journal of Statistical Computation and Simulation. ,vol. 9, pp. 161- 163 ,(1979) , 10.1080/00949657908810309
D. E. Barton, C. L. Mallows, Some Aspects of the Random Sequence Annals of Mathematical Statistics. ,vol. 36, pp. 236- 260 ,(1965) , 10.1214/AOMS/1177700286
W. L. STEVENS, SOLUTION TO A GEOMETRICAL PROBLEM IN PROBABILITY Annals of Human Genetics. ,vol. 9, pp. 315- 320 ,(1939) , 10.1111/J.1469-1809.1939.TB02216.X
Persi Diaconis, David Freedman, On Rounding Percentages Journal of the American Statistical Association. ,vol. 74, pp. 359- 364 ,(1979) , 10.1080/01621459.1979.10482518
Bruce M. Hill, Zipf's Law and Prior Distributions for the Composition of a Population Journal of the American Statistical Association. ,vol. 65, pp. 1220- 1232 ,(1970) , 10.1080/01621459.1970.10481157