Hybrid Monte Carlo on Hilbert spaces

作者: A. Beskos , F.J. Pinski , J.M. Sanz-Serna , A.M. Stuart

DOI: 10.1016/J.SPA.2011.06.003

关键词:

摘要: The Hybrid Monte Carlo (HMC) algorithm provides a framework for sampling from complex, high-dimensional target distributions. In contrast with standard Markov chain (MCMC) algorithms, it generates nonlocal, nonsymmetric moves in the state space, alleviating random walk type behaviour simulated trajectories. However, similarly to algorithms based on or Langevin proposals, number of steps required explore distribution typically grows dimension space. We define generalized HMC which overcomes this problem measures arising as finite-dimensional approximations π have density respect Gaussian measure an infinite-dimensional Hilbert key idea is construct MCMC method well defined space itself. We successively address following issues setting space: (i) construction probability Π enlarged phase having marginal, together Hamiltonian flow that preserves Π; (ii) development suitable geometric numerical integrator flow; and (iii) derivation accept/reject rule ensure preservation when using above instead actual flow. Experiments are reported compare new version

参考文章(36)
M.A. Lifshits, Gaussian Random Functions Springer Netherlands. ,(1995) , 10.1007/978-94-015-8474-6
Giuseppe Da Prato, Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions ,(1992)
Mark Girolami, Ben Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 73, pp. 123- 214 ,(2011) , 10.1111/J.1467-9868.2010.00765.X
Jack K. Hale, Infinite dimensional dynamical systems LNM. ,vol. 1007, pp. 379- 400 ,(1981) , 10.1007/BFB0061425
Alexandros Beskos, Andrew Stuart, Computational Complexity of Metropolis-Hastings Methods in High Dimensions In: LEcuyer, P and Owen, AB, (eds.) MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008. (pp. 61 - 71). SPRINGER-VERLAG BERLIN (2009). pp. 61- 71 ,(2009) , 10.1007/978-3-642-04107-5_4
Alexandros Beskos, Andrew M. Stuart, MCMC methods for sampling function space European Mathematical Society. pp. 337- 364 ,(2009) , 10.4171/056