InstantDL - An easy-to-use deep learning pipeline for image segmentation and classification

作者: Dominik Waibel , Sayedali Shetab Boushehri , Carsten Marr

DOI: 10.1101/2020.06.22.164103

关键词:

摘要: MotivationDeep learning contributes to uncovering and understanding molecular cellular processes with highly performant image computing algorithms. Convolutional neural networks have become the state-of-the-art tool provide accurate, consistent fast data processing. However, published algorithms mostly solve only one specific problem they often require expert skills a considerable computer science machine background for application. ResultsWe thus developed deep pipeline called InstantDL four common processing tasks: semantic segmentation, instance pixel-wise regression classification. enables experts non-experts apply biomedical minimal effort. To make robust, we automated standardized workflows extensively tested it in different scenarios. Moreover, allows assess uncertainty of predictions. We benchmarked on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization tasks, all code is easily accessible. Availability ImplementationInstantDL under terms MIT licence. It can be found GitHub: https://github.com/marrlab/InstantDL Contactcarsten.marr@helmholtz-muenchen.de

参考文章(45)
Dan C. Cireşan, Alessandro Giusti, Luca M. Gambardella, Jürgen Schmidhuber, Mitosis detection in breast cancer histology images with deep neural networks. medical image computing and computer-assisted intervention. ,vol. 16, pp. 411- 418 ,(2013) , 10.1007/978-3-642-40763-5_51
Philipp Fischer, Thomas Brox, None, U-Net: Convolutional Networks for Biomedical Image Segmentation medical image computing and computer assisted intervention. pp. 234- 241 ,(2015) , 10.1007/978-3-319-24574-4_28
Yavuz Selim Yilmaz, Bahadir Ismail Aydin, Murat Demirbas, Google cloud messaging (GCM): An evaluation global communications conference. pp. 2807- 2812 ,(2014) , 10.1109/GLOCOM.2014.7037233
Rina D Rudyanto, Sjoerd Kerkstra, Eva M Van Rikxoort, Catalin Fetita, Pierre-Yves Brillet, Christophe Lefevre, Wenzhe Xue, Xiangjun Zhu, Jianming Liang, Ilkay Öksüz, Devrim Ünay, Kamuran Kadipaşaogˇlu, Raúl San José Estépar, James C Ross, George R Washko, Juan-Carlos Prieto, Marcela Hernández Hoyos, Maciej Orkisz, Hans Meine, Markus Hüllebrand, Christina Stöcker, Fernando Lopez Mir, Valery Naranjo, Eliseo Villanueva, Marius Staring, Changyan Xiao, Berend C Stoel, Anna Fabijanska, Erik Smistad, Anne C Elster, Frank Lindseth, Amir Hossein Foruzan, Ryan Kiros, Karteek Popuri, Dana Cobzas, Daniel Jimenez-Carretero, Andres Santos, Maria J Ledesma-Carbayo, Michael Helmberger, Martin Urschler, Michael Pienn, Dennis GH Bosboom, Arantza Campo, Mathias Prokop, Pim A de Jong, Carlos Ortiz-de-Solorzano, Arrate Muñoz-Barrutia, Bram van Ginneken, None, Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study Medical Image Analysis. ,vol. 18, pp. 1217- 1232 ,(2014) , 10.1016/J.MEDIA.2014.07.003
Bernd Bischl, Luis Torgo, Joaquin Vanschoren, Jan N. van Rijn, OpenML: networked science in machine learning Sigkdd Explorations. ,vol. 15, pp. 49- 60 ,(2014) , 10.1145/2641190.2641198
Nobuyuki Otsu, A Threshold Selection Method from Gray-Level Histograms IEEE Transactions on Systems, Man, and Cybernetics. ,vol. 9, pp. 62- 66 ,(1979) , 10.1109/TSMC.1979.4310076
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
David A. Van Valen, Takamasa Kudo, Keara M. Lane, Derek N. Macklin, Nicolas T. Quach, Mialy M. DeFelice, Inbal Maayan, Yu Tanouchi, Euan A. Ashley, Markus W. Covert, Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments PLOS Computational Biology. ,vol. 12, pp. e1005177- ,(2016) , 10.1371/JOURNAL.PCBI.1005177
Yoshua Bengio, Ian Goodfellow, Aaron Courville, None, Deep Learning MIT Press. ,(2016)
Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, Sebastian Thrun, Dermatologist-level classification of skin cancer with deep neural networks Nature. ,vol. 542, pp. 115- 118 ,(2017) , 10.1038/NATURE21056